UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

www.papaCambridge.com MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

										they are		
	Pag	ge 2		Mai	k Scheme	: Teachers	version		Syllabu	A. et	er	
				GCE AS/	A LEVEL –	October/N	lovember	2011	9702		20	
						Sectio	n A				an	b.
1	(a)	GМ	$m/r^2 =$	$mr\omega^2$ (mu	vides the co st be in terr s a constar	ns of ω)	orce				B1 B1 B1	bridge.com
	(b)	(i)	1. for	Phobos, a	$v = 2\pi/(7.6)$	5 × 3600) 10 ⁻⁴ rad s ⁻¹					C1	
			(9.3 <i>M</i>	$(.39 \times 10^6)^3$ = 6.46 ×	× (2.28 × 1	$(0^{-4})^2 = 6.6$	67 × 10 ^{−11} ×	: M			C1 A1	[3]
			ω T	= 7.30 × 1	0 ^{−5} rad s ^{−1} 2π/(7.30 ×		99 × 10 ⁷) ³ :	$\times \omega^2$			C1 C1	
				= 23.6 ho	urs						A1	[3]
		(ii)		-	ostationary ould take a		o cross the	sky			B1	[1]
2	(a)	-	no inter volume contain	rmolecular e of <u>mole</u> ner collision n	forces of a cules/atom	ttraction/re s/particles	<u>ecules/ator</u> pulsion negligible een collisior	<u>compare</u>		lume of	B2	[2]
	<i></i> .		_									
	(b)	(i)	1 . nui	mber of (g	as) <u>molecu</u>	les					B1	[1]
			2. me	ean square	speed/velo	ocity (of gas	s molecules	5)			B1	[1]
		(ii)		bV = NkT E _K > = ½m<	or pV = n cc²>	RT and link	s <i>n</i> and <i>k</i>				M1	
			clear al	lgebra lead	ling to < <i>E</i> _K	$> = \frac{3}{2}kT$					A1	[2]
	(c)	(i)		•	energy and om (distribu		rgy of <u>mole</u>	cules/ato	ms/partic	les	M1 A1	[2]
		(ii)			forces so r	•	••				B1	
					rnal energ nange in)7		nge in) ki	netic ene	ergy and	this is	B1	[2]

Page 3	3 Mark Scheme: Teachers' version Syllab	ous A er	
	GCE AS/A LEVEL – October/November 2011 970	2 2	
(a) (i)	amplitude remains constant	Can	Br.
(ii)	<u>amplitude</u> decreases gradually light damping	MANNA Papacann 2 Papacann M1 A1	10-
(iii)	period = 0.80 s frequency = 1.25 Hz (period not 0.8 s, then 0/2)	C1 A1	[2]
(b) (i)	(induced) e.m.f. is proportional to rate of change/cutting of (magnetic) flux (linkage)	M1 A1	[2]
(ii)	as magnet moves in coil current in resistor gives rise to a heating effect	M1 A1 M1	
(a) (i)	thermal energy is derived from energy of oscillation of the magnet zero field (strength) inside spheres	A1 B1	[4] [1]
(a) (i)		Ы	۲.
(ii)	<i>either</i> field strength is zero <i>or</i> the fields are in opposite directions at a point between the spheres	M1 A1	[2]
(b) (i)	field strength is (–) potential gradient <i>(not V/x)</i>	B1	[1
(ii)	 field strength has maximum value at x = 11.4 cm 	B1 B1	[2
	2. field strength is zero either at $x = 7.9$ cm (allow ± 0.3 cm)	B1	
	or at 0 to 1.4 cm or 11.4 cm to 12 cm	B1	[2]
(a) (i)	$Bqv(sin\theta)$ or $Bqv(cos\theta)$	B1	[1]
(ii)	qE	B1	[1
(b) <i>F</i> _₽	must be opposite in direction to $F_{\rm E}$	B1	

	Mark Scheme: Teachers' version Syllabus	2 2	
	GCE AS/A LEVEL – October/November 2011 9702	They a	
	od = 1/50 0.03 s	MMM. Papacan. A1	Ibrio
(ii) peal	<pre>< voltage = 17.0 V</pre>	A1	
(iii) r.m.s	s. voltage = 17.0/√2 = 12.0 V	A1	[1]
(iv) mea	n voltage = 0	A1	[1]
(b) power	$= V^2/R$ = 12 ² /2.4	C1	
	= 60 W	A1	[2]
	e represents photon of specific energy mitted as a result of energy change of electron	M1 M1	
•	energy changes so discrete levels	A1	[3]
(b) (i) arro	w from –0.85 eV level to –1.5 eV level	B1	[1]
(ii) ∆ <i>E</i>	= hc /λ = (1.5 - 0.85) × 1.6 × 10 ⁻¹⁹ = 1.04 × 10 ⁻¹⁹ J	C1 C1	
λ	$= (6.63 \times 10^{-34} \times 3.0 \times 10^{8})/(1.04 \times 10^{-19})$		
	$= 1.9 \times 10^{-6} \mathrm{m}$	A1	[3]
two dark		B1 B1	
	s in gas absorb photons with energies equal to the excitation energ tons re-emitted in all directions	ies M1 A1	[4]
	for initial number of nuclei/activity educe to one half of its initial value	M1 A1	[2]
	In $2/(24.8 \times 24 \times 3600)$	M1	[2]
=	$3.23 \times 10^{-7} \text{ s}^{-1}$	A0	[1]
(b) (i) A =	λN 5 × 10 ⁶ = 3.23 × 10 ⁻⁷ × N	C1	
N =	1.15 × 10 ¹³	A1	[2]
(ii)	1.15 × 10 ¹³ × exp(-{ln 2 × 30}/24.8)	C1	101
=	4.97×10^{12}	A1	[2]

Pa	age		Syllabus Syllabus	r
		GCE AS/A LEVEL – October/November 2011	9702 23	
		Section B	Syllabus 9702 B2	76.
(a)	e.	g. reduced gain		10
		increased stability		
	(a	greater bandwidth or less distortion llow any two sensible suggestions, 1 each, max 2)	B2	[2]
	,			
(b)) (i)	V^- connected to midpoint between resistors	B1	
	.,	V_{OUT} clear and input to V ⁺ clear	B1	[2]
	(ii)	gain = 1 + $R_{\rm F}/R$		
		15 = 1 + 12000/R	C1	
		$R = 860 \Omega$	A1	[2]
(c)	ar	aph: straight line from (0,0) to (0.6,9.0)	B1	
(0)	gi	straight line from (0.6,9.0) to (1.0,9.0)	B1	[2]
(d)	ei	ther relay can be used to switch a large current/voltage	M1	
	or	output current of op-amp is a few mA/very small relay can be used as a remote switch	A1 (M1)	[2]
	01	for inhospitable region/avoids using long heavy cables	(A1)	
) (a)	e.	g. large bandwidth/carries more information		
		low attenuation of signal low cost		
		smaller diameter, easier handling, easier storage, less weight	t	
		high security/no crosstalk low noise/no EM interference		
	(a	llow any four sensible suggestions, 1 each, max 4)	B4	[4]
(b)) (i)	infra-red	B1	[1]
	(ii)	lower attenuation than for visible light	B1	[1]
	. ,	5		
(c)	(i)	$gain/dB = 10 lg(P_2/P_1)$	C1	
		26 = 10 lg(P_2 /9.3 × 10 ⁻⁶) P_2 = 3.7 × 10 ⁻³ W	A1	101
				[2]
	(ii)	power loss along fibre = $30 \times 0.2 = 6.0 \text{ dB}$ either 6 = $10 \log(P/3.7 \times 10^{-3})$ or 6 dB = $4 \times 3.7 \times 10^{-3}$	C1	
		or $32 = 10 \log(P/9.3 \times 10^{-6})$		
		input power = 1.5×10^{-2} W	A1	[2]

Page 6		Mark Scheme: Teachers' version	Syllabus	er	•
		GCE AS/A LEVEL – October/November 2011	9702	00	
(a) (i)	swite	ch		al	
.,.,		nat one aerial can be used for transmission and recepti	Syllabus 9702		orid
(ii)	tunir	ng circuit		M1	3
	to se	elect (one) carrier frequency (and reject others)		A1	[2]
(iii)	anal	ogue-to-digital converter/ADC		M1	
	con	verts microphone output to a digital signal		A1	[2]
(iv)	(a.f.)) amplifier <i>(not r.f. amplifier)</i>		M1	
	to in	crease (power of) signal to drive the loudspeaker		A1	[2]
(b) e.c	a. shor	t aerial so easy to handle			
(10) 0.8	-	t range so less interference between base stations			
,	-	er waveband so more carrier frequencies		50	101
(ar	ny two	sensible suggestions, 1 each, max 2)		B2	[2]