UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

www.papacambridge.com MARK SCHEME for the May/June 2012 guestion paper

for the guidance of teachers

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	nge 2	Mark Scheme: Teachers' version	Syllabus	Q.
		GCE AS/A LEVEL – May/June 2012	9702	No.
ctior	۱A			
(a)	work do	one in bringing unit mass from infinity (to the point)		B1 B1
(b)	-	tional <u>force</u> is (always) attractive		B1
	either or	as <i>r</i> decreases, object/mass/body does work work is done by masses as they come together		B1
(c)	either	force on mass = mg (where g is the acceleration of	free fall	
		/gravitational field st	rength)	B1
		$g = GM/r^2$ if $r \otimes h$, g is constant		B1 B1
		$\Delta E_{\rm P}$ = force × distance moved		ы М1
		= mgh		A0
	or	$\Delta E_{\rm P} = m \Delta \phi$		(C1)
	•	$= GMm(1/r_1 - 1/r_2) = GMm(r_2 - r_1)/r_1r_2$		(B1)
		if $r_2 \approx r_1$, then $(r_2 - r_1) = h$ and $r_1 r_2 = r^2$		(B1)
		$g = GM/r^2$		(B1)
		$\Delta E_{P} = mgh$		(A0)
(d)	¹ ⁄₂mv ² :	$= m\Delta\phi$		
		× GM/r		C1
	= (2	$2 \times 4.3 \times 10^{13}$) / (3.4 × 10 ⁶) .0 × 10 ³ m s ⁻¹		C1
		$10 \times 10 \text{ ms}$ f diameter instead of radius to give v = 3.6 × 10^3 m s^{-1} s	cores 2 marks)	A1
(a)	(i) eitl	<i>her</i> random motion		
	or	constant velocity until hits wall/other molecule		B1
		tal) volume of molecules is negligible		M1
	cor or	mpared to volume of containing vessel		A1
		dius/diameter of a molecule is negligible		(M1)
		mpared to the average intermolecular distance		(A1)
(b)	either	molecule has component of velocity in three direction	S	
-	or	$c^2 = c_X^2 + c_Y^2 + c_Z^2$		M1
	random	n motion and averaging, so $\langle c_X^2 \rangle = \langle c_Y^2 \rangle = \langle c_Z^2 \rangle$		M1
		$= 3 < c_X^2 >$		A1
	so, pV	$= \frac{1}{3}Nm < c^2 >$		A0
(c)	< c²> ∞	\sim T or $c_{ m rms}$ \propto \sqrt{T}		C1
(c)	tempera	atures are 300 K and 373 K		C1 C1
c)	tempera c _{rms} =			

	Page 3		Page 3	e 3	Mark Scheme: Teachers' version	Syllabus	Papacambra M1 A1
	U		GCE AS/A LEVEL – May/June 2012	9702	Po-		
6 (á	t v	 (numerically equal to) quantity of (thermal) energy required to change the state of unit mass of a substance without any change of temperature (Allow 1 mark for definition of specific latent heat of fusion/vaporisation) 					
(1	·	either or	energy supplied = $2400 \times 2 \times 60 = 288000 \text{ J}$ energy required for evaporation = $106 \times 2260 = 240$ difference = 48000 J rate of loss = $48000 / 120 = 400 \text{ W}$ energy required for evaporation = $106 \times 2260 = 240$ power required for evaporation = $240000 / (2 \times 60) = 2$ rate of loss = $2400 - 2000 = 400 \text{ W}$	000 J 000 J	C1 C1 (C1) (C1) (A1) [3		
l (a	7	T = (a = ($)\omega^2 x \text{ and } \omega = 2\pi/T$.60 s $4\pi^2 \times 2.0 \times 10^{-2}) / (0.6)^2$.2 m s ⁻²		C1 C1 A1 [3		
(I	, a	all val	idal wave with all values positive ues positive, all peaks at $E_{\rm K}$ and energy = 0 at t = 0 = 0.30 s		B1 B1 B1 [3		
5 (a	a) f	orce	per unit positive charge acting on a stationary charge		B1 [1		
(I	b) (Ģ	= $Q / 4\pi\epsilon_0 r^2$ = $1.8 \times 10^4 \times 10^2 \times 4\pi \times 8.85 \times 10^{-12} \times (25 \times 10^{-2})^2$ = 1.25×10^{-5} C = 12.5μ C		C1 M1 A0 [2		
	(i	-	= $Q / 4\pi\epsilon_0 r$ = $(1.25 \times 10^{-5}) / (4\pi \times 8.85 \times 10^{-12} \times 25 \times 10^{-2})$ = $4.5 \times 10^5 V$ to not allow use of V = Er unless explained)		C1 A1 [2		

		2	
Page 4	Mark Scheme: Teachers' version S GCE AS/A LEVEL – May/June 2012	9702	r
(a) (i) pea	<pre>< voltage = 4.0 V</pre>	Syllabus 9702 A1 A1 M1 M1 A0	3
(ii) r.m.:	s. voltage (= $4.0/\sqrt{2}$) = 2.8 V	A1	orio
(iii) peri	pd $T = 20 \mathrm{ms}$	M1	
	$u = 1 / (20 \times 10^{-3})$	M1	
freq	uency = 50 Hz	A0	[2]
(b) (i) chai	nge = 4.0 - 2.4 = 1.6 V	A1	[1]
(ii) ∆Q	= $C\Delta V$ or $Q = CV$	C1	
	$= 5.0 \times 10^{-6} \times 1.6 = 8.0 \times 10^{-6} C$	A1	[2]
	harge time = 7 ms	C1	
curre	ent = $(8.0 \times 10^{-6}) / (7.0 \times 10^{-3})$ = $1.1(4) \times 10^{-3}$ A	M1 A0	[2]
	$-1.1(4) \sim 10$ A	AU	[2]
(c) average		C1	
resistanc	$x = 3.2 / (1.1 \times 10^{-3})$ = 2900 \Omega (allow 2800 \Omega)	A1	[2]
			[-]
• •	concentric circles (minimum of 3 circles)	M1	
	separation increasing with distance from wire correct direction	A1 B1	[3]
			[-]
(b) (i) arro	w direction from wire B towards wire A	B1	[1]
(ii) eithe or	er reference to Newton's third law force on each wire proportional to product of the two c	urrents M1	
	proces are equal	A1	[2]
	<u>ays</u> towards wire A/ <u>always</u> in same direction	B1	
variation	om zero (to a maximum value) (1) is sinusoidal / sin ² (1)		
	e frequency of current (1) , one each)	B2	[3]
	,		[0]
	uantum/discrete amount of energy	M1	
	omagnetic radiation mark for 'packet of electromagnetic radiation')	A1	
	Planck constant × frequency (seen here or in b)	B1	[3]
		54	
	loured) line corresponds to one wavelength/frequency Planck constant × frequency	B1	
implies s	pecific energy change between energy levels	B1	10
so discre	ete levels	A0	[2

Page 5	Mark Scheme: Teachers' version Sy	villabus 🔗 er	,
	GCE AS/A LEVEL – May/June 2012	9702 23	
(a) (i) ei	<i>her</i> probability of decay (of a nucleus) per unit time	vilabus 9702 M1 A1	Bri
or	$\lambda = (-)(dN/dt) / N$ (-)dN/dt and N explained	(M1) (A1)	bride
1⁄2 In	time $t_{\frac{1}{2}}$, number of nuclei changes from N_0 to $\frac{1}{2}N_0$ = $\exp(-\lambda t_{\frac{1}{2}})$ or $2 = \exp(\lambda t_{\frac{1}{2}})$ ($\frac{1}{2}$) = $-\lambda t_{\frac{1}{2}}$ and ln ($\frac{1}{2}$) = -0.693 or ln $2 = \lambda t_{\frac{1}{2}}$ and ln $2 = 693 = \lambda t_{\frac{1}{2}}$	B1	[3]
$\lambda = 0.2$	538 exp(–8λ) 07 (hours ^{–1}) 5 hours <i>(do not allow 3 or more SF)</i>	C1 C1 A1	[3]
backg daugh	ndom nature of decay ound radiation er product is radioactive vo sensible suggestions, 1 each)	B2	[2]

	Pa	ige 6	5	Mark Scheme: Teachers' versionSyllabutGCE AS/A LEVEL – May/June 20129702	- Papa	er
Sec	tior	ו B				amb.
0	(a)	ligh	it-dep	endent resistor (allow LDR)	B1	110
	(b)	(i)		resistors in series between +5V line and earth point connected to inverting input of op-amp	B1 M1 A1	[2]
		(ii)	-	y coil between diode and earth ch between lamp and earth	M1 A1	[2]
	(c)	(i)		ch on/off mains supply using a low voltage/current output w 'isolates circuit from mains supply')	B1	[1]
		(ii)	-	y will switch on for one polarity of output (voltage) ches on when output (voltage) is negative	C1 A1	[2]
11	(a)	(i)		radiation produced whenever charged particle is accelerated trons hitting target have distribution of accelerations	M1 A1	[2]
		(ii)	eithe or or all el	er wavelength shorter/shortest for greater/greatest acceleration $\lambda_{\min} = hc/E_{\max}$ minimum wavelength for maximum energy lectron energy given up in one collision/converted to single photon	B1 B1	[2]
	(b)	(i)		Iness measures the penetration of the beam ater hardness, greater penetration	C1 A1	[2]
		(ii)		rolled by changing the anode voltage er anode voltage, greater penetration/hardness	C1 A1	[2]
	(c)	(i)	-	-wavelength radiation more likely to be absorbed in the body/less y to penetrate through body	B1	[1]
		(ii)	(alur	minium) filter/metal foil placed in the X-ray beam	B1	[1]
12	(a)	stro <i>eith</i>		niform (magnetic) field aligns nuclei	M1	
		or	n-unifo	gives rise to Larmor/resonant frequency <u>in r.f. region</u> orm (magnetic) field enables nuclei to be located	A1 M1	
		or		changes the Larmor/resonant frequency	A1	[4]
	(b)	(i)	diffe	erence in flux density = 2.0 × 10 ⁻² × 3.0 × 10 ⁻³ = 6.0 × 10 ⁻⁵ T	A1	[1]
		(ii)		$= 2 \times c \times \Delta B$ = 2 × 1.34 × 10 ⁸ × 6.0 × 10 ⁻⁵	C1	
				$= 1.6 \times 10^4 \text{ Hz}$	A1	[2

	Page 7		7 Mark Scheme: Teachers' version Syl		Syllabus	MAN Papa	er
				GCE AS/A LEVEL – May/June 2012	9702	No.	
							Can I
3 (a	a)	(i)	no	interference (between signals) near boundaries (of cells))	B1	ambridge
		<i>/</i>	6		the second of		90
		(ii)		Iarge area, signal strength would have to be greater and hazardous to health	this could	B1	[1]
			50			21	1.1
/	h)	mol	alla	nhono is conding out on (identifying) signal		M1	
(I				phone is sending out an (identifying) signal ter/cellular exchange <u>continuously</u> selects cell/base statio	n	IVII	
				ongest signal		A1	
				ter/cellular exchange allocates (carrier) frequency (and sl	ot)	A1	[3]