MMN. Papa

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus
	GCE AS/A LEVEL – May/June 2012	9702

Section A

- 1 (a) force proportional to product of masses and inversely proportional to square of separation (do not allow square of distance/radius)

 either point masses or separation (a) size of masses

 A1
 - (b) (i) $\omega = 2\pi / (27.3 \times 24 \times 3600)$ or $2\pi / (2.36 \times 10^6)$ M1 = $2.66 \times 10^{-6} \,\text{rad s}^{-1}$ A0 [1]
 - (ii) $GM = r^3 \omega^2$ or $GM = v^2 r$ C1 $M = (3.84 \times 10^5 \times 10^3)^3 \times (2.66 \times 10^{-6})^2 / (6.67 \times 10^{-11})$ M1 $= 6.0 \times 10^{24} \text{kg}$ A0 [2] (special case: uses $g = GM/r^2$ with g = 9.81, $r = 6.4 \times 10^6$ scores max 1 mark)
 - (c) (i) grav. force = $(6.0 \times 10^{24}) \times (7.4 \times 10^{22}) \times (6.67 \times 10^{-11})/(3.84 \times 10^{8})^{2}$ C1 = 2.0×10^{20} N (allow 1 SF) A1 [2]
 - (ii) either $\Delta E_P = Fx$ because F constant as x! radius of orbit $\Delta E_P = 2.0 \times 10^{20} \times 4.0 \times 10^{-2}$ C1 $= 8.0 \times 10^{18} \, \text{J}$ (allow 1 SF) A1 [3]
 - or $\Delta E_{\rm P} = GMm/r_1 GMm/r_2$ C1 Correct substitution B1 8.0 × 10¹⁸ J A1 ($\Delta E_{\rm P} = GMm/r_1 + GMm/r_2$ is incorrect physics so 0/3)
- 2 (a) energy = $\frac{1}{2}m\omega^2 a^2$ and $\omega = 2\pi f$ C1 = $\frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ M1 = 7.0×10^{-3} J A0 [2] (allow $2\pi \times 3.5$ shown as 7π)
 - Energy = $\frac{1}{2} mv^2$ and $v = r\omega$ (C1) Correct substitution (M1) Energy = 7.0×10^{-3} J (A0)
 - (b) $E_{\rm K} = E_{\rm P}$ $1/2 m \omega^2 (a^2 - x^2) = 1/2 m \omega^2 x^2$ or $E_{\rm K}$ or $E_{\rm P} = 3.5 \, {\rm mJ}$ C1 $x = a/\sqrt{2} = 2.8 / \sqrt{2}$ or $E_{\rm K} = 1/2 m \omega^2 (a^2 - x^2)$ or $E_{\rm P} = 1/2 m \omega^2 x^2$ C1 $= 2.0 \, {\rm cm}$ A1 [3] $(E_{\rm K}$ or $E_{\rm P} = 7.0 \, {\rm mJ}$ scores 0/3)
 - Allow: k = 17.9 (C1) $E = \frac{1}{2} kx^2$ (C1) x = 2.0 cm (A1)

		•	Mark Cahama, Tarahami wanian	Cullaba	20	
P	age (3	Mark Scheme: Teachers' version	Syllabus 9702	B.	r
			GCE AS/A LEVEL – May/June 2012	9702	AC.	1
(c)	(i)	grap	h: horizontal line, y-intercept = 7.0 mJ with end-points +2.8 cm and –2.8 cm	of line at	B1 B1	Mon
	(ii)	grap	h: reasonable curve with maximum at (0,7.0) end-points of line at (–2.8,	. 0)	B1	
			and (+2.8, 0)	, - ,	B1	[2
		grap Allow	h: inverted version of (ii) with intersections at (–2.0, 3.5) and (+2.0, 3.5) marks in (iii) , but not in (ii) , if graphs K & P are not labe	elled)	M1 A1	[2
(d)	gra	vitatio	nal potential energy		B1	[
(a)			otential energy and kinetic energy of atoms/molecules/peto random (distribution)	articles	M1 A1	[3
(b)	(i)	mol no d	ttice structure is 'broken'/bonds broken/forces between cules reduced (not molecules separate) nange in kinetic energy, potential energy increases nal energy increases		B1 M1 A1	[
	(ii)		r molecules/atoms/particles move faster/ $< c^2 >$ is increased kinetic energy increases with temperature (increased nange in potential energy, kinetic energy increases and energy increases	•	B1 M1 A1	[
(a)	(i)		decreases, energy decreases/work got out (due to)		M1 A1	[
	(ii)	elec	ric potential energy = charge × electric potential ric field strength is potential gradient strength = gradient of potential energy graph/charge		B1 B1 A0	[
(b)	gra (fo	dient $r < \pm 0$.	rawn at (4.0, 14.5) = 3.6 × 10 ⁻²⁴ 3 allow 2 marks, for < ±0.6 allow 1 mark)		B1 A2	
			$_{\rm ngth} = (3.6 \times 10^{-24}) / (1.6 \times 10^{-19})$ = 2.3 × 10 ⁻⁵ V m ⁻¹ (allow ecf from gradient value) at solution for gradient leading to 2.3 × 10 ⁻⁵ Vm ⁻¹ scores	1 mark only	A1	[4

					4	
	Pa	ige 4	Mark Scheme: Teachers' version Sy	/llabus	.0	er
			GCE AS/A LEVEL – May/June 2012	9702	100	
5	(a)	(long) straight conductor carrying current of 1 A current/wire normal to magnetic field (for flux density 1 T,) force per unit length is 1 N m ⁻¹			M1 M1 A1	Cambridge
	(b)	b	originally) downward force on magnet (due to current) by Newton's third law (allow "N3") apward force on wire		B1 M1 A1	[3]
		` 2 E	E = BIL $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 6.4 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 5.6 \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 10^{-2}$ $E.4 \times 10^{-3} \times 9.8 = B \times 10^{-2}$ $E.4 \times 10^{-2} \times 9.8 = B \times 10^{-2}$ $E.4 \times 10^{-2$		C1 A1	[2]
	(c)		reading is 2.4√2g r changes between +3.4g and −3.4g total change is 6.8g		C1 A1	[2]
6	(a)	betwe	op charged by friction/beta source een parallel <u>metal</u> plates s are horizontal	(1)	B1 B1	

В1

B1

В1

B2

Α1

В1

C1 Α1

Α0

B1

В1

[7]

[1]

[1]

[2]

[3]

(1)

(1)

(1)

symbols explained

 $mg = q \times V/d$

(b) 3.2×10^{-19} C

(c) graph:

7

until oil drop is stationary

(any two extras, 1 each)

 $= 6.6 \times 10^{-34} \text{Js}$

oil drop viewed through microscope

adjustable potential difference/field between plates

m determined from terminal speed of drop (when p.d. is zero)

(a) minimum energy to remove an electron from the metal/surface

(b) gradient = 4.17×10^{-15} (allow $4.1 \rightarrow 4.3$) $h = 4.15 \times 10^{-15} \times 1.6 \times 10^{-19}$ or h = 4.1 to 4.3×10^{-15} eVs

straight line parallel to given line

with intercept at any higher frequency

intercept at between 6.9×10^{14} Hz and 7.1×10^{14} Hz

Page 5	Mark Scheme: Teachers' version	Syllabus	er
	GCE AS/A LEVEL – May/June 2012	9702	100

8	(a)	nuclei having same number of protons/proton (atomic) number different numbers of neutrons/neutron number (allow second mark for nucleons/nucleon number/mass number/atomic mass if made clear that same number of protons/proton number)	B1 B1	ambridge
	(b)	probability of decay per unit time is the decay constant $\lambda = \ln 2 / t_{1/2}$	C1	
		$= 0.693 / (52 \times 24 \times 3600)$ = 1.54 × 10 ⁻⁷ s ⁻¹	C1 A1	[3]

(c) (i)
$$A = A_0 \exp(-\lambda t)$$

 $7.4 \times 10^6 = A_0 \exp(-1.54 \times 10^{-7} \times 21 \times 24 \times 3600)$ C1
 $A_0 = 9.8 \times 10^6 \,\mathrm{Bq}$ A1 [2]
(alternative method uses 21 days as 0.404 half-lives)

(ii)
$$A = \lambda N$$
 and mass = $N \times 89 / N_A$ C1
mass = $(9.8 \times 10^6 \times 89) / (1.54 \times 10^{-7} \times 6.02 \times 10^{23})$
= 9.4×10^{-9} g A1 [2]

Page 6	Mark Scheme: Teachers' version	Syllabus
	GCE AS/A LEVEL – May/June 2012	9702

Section B

	Page 6			Mark Scheme: Teachers' version	Syllabus	. P. P.	
		<u> </u>		GCE AS/A LEVEL – May/June 2012	9702	Day	
Sec	tion	ιВ				di	8
9	(a)	zero infir infir infir		nite input impedance/resistance o output impedance/resistance nite (open loop) gain nite bandwidth nite slew rate or, one mark each)		Papa Call	Tidge.C
	(b)	grap		square wave 180° phase change amplitude 5.0 V	A	M1 A1 A1	[3]
	(c)	diod diod	des co des ic	symbol for LED connected correctly between V _{OUT} and earth dentified correctly case: if diode symbol, not LED symbol, allow 2 nd and 3 nd	F	M1 A1 A1 scored)	[3]
10	(a)	-	abso scat refle	m is divergent/obeys inverse square law orption (in block) ttering (of beam in block) ection (at boundaries) o sensible suggestions, 1 each)	E	B2	[2]
	(b)	(i)	I_0/I	= $I_0 \exp(-\mu x)$ = $\exp(0.27 \times 2.4)$ = 1.9		C1 A1	[2]
		(ii)		= $\exp(0.27 \times 1.3) \times \exp(3.0 \times 1.1)$ = 1.42×27.1 = 38.5		C1 A1	[2]
	(c)	eithe or		much greater absorption in bone than in soft tissue $I_{\rm o}/I$ much greater for bone than soft tissue	E	B1	[1]
11	(a)	(i)	loss	s of (signal) power	E	B1	[1]
				vanted power (on signal) is random		M1 A1	[2]
	(b)		_	al, only the 'high' and the 'low' / 1 and 0 are necessary n between 'highs' and 'lows' caused by noise not require		M1 A1	[2]
	(c)		er	ion = $10 \lg(P_2 / P_1)$ $195 = 10 \lg({2.4 \times 10^3} / P)$ $-195 = 10 \lg(P / 2.4 \times 10^3)$		C1 C1	
			7.6 >	× 10 ⁻¹⁷ W		A1	[3]

		my
Page 7	Mark Scheme: Teachers' version	Syllabus
	GCE AS/A LEVEL – May/June 2012	9702

12	(a) (i)	modulator	B1	BANK.
	(ii)	serial-to-parallel converter (accept series-to-parallel converter)	B1	Tage
	(b) (i)	enables one aerial to be used for transmission and receipt of signals	A1	[1] COM
	(ii)	all bits for one number arrive at one time bits are sent out one after another	B1 B1	[2]