CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

www.papacambridge.com MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE. GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	age 2	Mark Scheme Syllabu	· ~ ~	r
		GCE AS/A LEVEL – October/November 2012 9702	No.	
(a) spa	acing = $380 \text{ or } 3.8 \times 10^2 \text{ pm}$	M. Papacal.	nori
(h) time	e = 24 × 3600		1
(15		e = 0.086 (0.0864) Ms	B1	[1
(c) time	e = distance / speed = $\frac{1.5 \times 10^{11}}{3 \times 10^8}$	C1	
	, unic			
		= 500 (s) = 8.3 min	A1	[2]
(d) mor	mentum and weight	B1	[1]
(e) (i)	arrow to the right of plane direction (about 4° to 24°)	B1	[1]
	(ii)	scale diagram drawn or use of cosine formula $v^2 = 250^2 + 36^2 - 2 \times 250 \times 36 \times \cos 45^\circ$		
		or resolving $v = [(36\cos 45^\circ)^2 + (250 - 36\sin 45^\circ)^2]^{1/2}$	C1	
		resultant velocity = 226 (220 – 240 for scale diagram)m s ⁻¹ allow one mark for values 210 to 219 or 241 to 250 m s ⁻¹		
		or use of formula ($v^2 = 51068$) $v = 230$ (226) m s ⁻¹	A1	[2
(a)) (i)	accelerations (A to B and B to C) are same magnitude	B1	
	.,	accelerations (A to B and B to C) are opposite directions or both accelerations are toward B	B1	
		(A to B and B to C) the component of the weight down the slope provides		10
		the acceleration	B1	[3
	(ii)	acceleration = $g \sin 15^{\circ}$ s = 0 + $\frac{1}{2} at^{2}$ s = 0.26 / sin 15° = 1.0	C1 C1	
		10×2		
		$t^2 = \frac{1.0 \times 2}{9.8 \times \sin 15^\circ}$ $t = 0.89 \mathrm{s}$	A1	[3
	(iii)	$v = 0 + g \sin 15t$ or $v^2 = 0 + 2g \sin 15 \times 1.0$	C1	
	\·/	$v = 2.26 \text{ m s}^{-1}$	A1	[2
		(using loss of GPE = gain KE can score full marks)		
(b		s of GPE at A = gain in GPE at C or loss of KE at B = gain in GPE at C	B1	
		$h_2 = 0.26 \text{ m or } \frac{1}{2} mv^2 = mgh$ $h_2 = 0.5 \times (2.26)^2 / 9.81 = 0.26 \text{ m}$ 0.26 / sin 30° = 0.52 m	A1	[2
(a		ver is the rate of doing work or power = work done / time (taken) or	5.4	
	ром	ver = energy transferred / time (taken)	B1	[1
(b) (i)	as the speed increases drag / air resistance increases	B1	
	, , ,	resultant force reduces hence acceleration is less constant speed when resultant force is zero	B1 B1	[3
			B (1	

Page 3	Mark	Scheme	Syllabu	e e	•
	GCE AS/A LEVEL - 0	October/November 2012	9702	Da	
P =	ce from cyclist = drag force 12 × 48 576 W	/ resistive force	Syllabu 9702	A0	nbride
	gent drawn at speed = 8.0r dient values that show acce	m s ^{–1} eleration between 0.44 to 0.4	-8 m s ^{−2}	M1 A1	[2]
(iv) F - 600		[using <i>P</i> = 576] 576 / 8 <i>R</i> = 72 – 40 = 32 N	– <i>R</i> = 80 × 0.5	C1 C1 A1	[3]
R/	12 m s^{-1} drag is 48 N, at 8 m v calculated as 4 and 4 or 4 consistent response for w		or not	B1	[1]
p.d. = e	chemical energy to electric lectrical energy to thermal e per unit charge			M1 M1 A1	[3]
(b) $E = I(R)$	(R + r) or I = E / (R + r) (a)	ny subject)		B1	[1]
(c) (i) <i>E</i> =	5.8V			B1	[1]
e.g.	dence of gradient calculatio . 5.8 = 4 + 1.0 × <i>r</i> 1.8Ω	on or calculation with values fr	om graph	C1 A1	[2]
(d) (i) <i>P</i> = <i>P</i> =	<i>VI</i> 2.9 × 1.6 = 4.6 (4.64)W			C1 A1	[2]
		8 = 9.28 or efficiency = VI / EI 0 = 50 % or (2.9 / 5.8) × 100 =		C1 A1	[2]
(a) travel th	rough a vacuum / free spa	ce		B1	[1]
C :	name: microwa name: ultra-vio name: X –rays	blet / UV wavelength: 10 ⁻⁷ to	10 ⁻⁹ m	B1 B1 B1	[3]
(ii) f =	$= \frac{3 \times 10^8}{500 \times 10^{-9}}$			C1	

Pa	ge 4		Mark Scheme Sylla	ibu. ~ , e	r
			GCE AS/A LEVEL – October/November 2012 970	02 20	
(c)	per	pendi	s are in one direction cular to direction of propagation / energy transfer sketch showing this	hunn, Bahacan D2 A1 B1	nbilo-
(a)	(i)	elect	ron	B1	[1]
	(ii)	abso	t wo: be deflected by electric and magnetic fields or negatively chargor brbed by few (1 – 4)mm of aluminum / 0.5 to 2 m or metres for r ad up to 0.99c / range of speeds / energies	ed / ange in air /	
				B2	[2]
	(iii)		y occurs and cannot be affected by external / environmental fa o stated factors such as chemical / pressure / temperature / hu		[1]
(b)			or superscript numbers for subscript numbers	B1 B1	[2]
(c)	ene	ergy =	$5.7 \times 10^3 \times 1.6 \times 10^{-19} (= 9.12 \times 10^{-16} \text{ J})$	C1	
	v ² =	= <u>2 × 9</u> .7	$\frac{9.12 \times 10^{-16}}{11 \times 10^{-31}}$	C1	
	v =	• 4.5 ×	^c 10 ⁷ m s ⁻¹	A1	[3]
(d)	1 ne (spe	eutror ecial c	e 1 proton and 1 electron in hydrogen-2 and 2 neutrons in hydrogen-3 case: for one mark 'same number of protons / atomic number number of neutrons')	B1 B1	[2]