Nuclear Physics - 2018

1. 9702/11/M/J/18/No.38

Which elementary particle is a lepton?

- A proton
- B neutron
- c electron
- **D** quark
- 2. 9702/11/M/J/18/No.39

How many down quarks are in a nucleus of hydrogen-3, ³₁H?

- A 2
- **B** 3
- C 4

2 neutrons - und + ude

3. 9702/11/M/J/18/No.40

What is the correct equation for β^{+} decay?

- A neutron → proton + electron + electron antineutrino
- B neutron → proton + electron + electron neutrino
- C proton → neutron + positron + electron antineutrino
- D proton → neutron + positron + electron neutrino
- proton numbre position numbres

4. 9702/12/M/J/18/No.38

In the α -particle scattering experiment, a beam of α -particles is aimed at a thin gold foil. Most of the α -particles go straight through or are deflected by a small angle. A very small proportion are deflected through more than 90°, effectively rebounding towards the source of the α -particles.

Which conclusion about the structure of atoms cannot be drawn from this experiment alone?

- A Most of the atom is empty space.
- B Most of the mass of an atom is concentrated in the nucleus.
- The nucleus contains both protons and neutrons.
- D The nucleus is charged.

5. 9702/12/M/J/18/No.39

Radon-211, $^{211}_{86}$ Rn, francium-210, $^{210}_{87}$ Fr, and radium-212, $^{212}_{88}$ Ra, are three nuclides.

How many neutrons does each nuclide have in its nucleus?

	radon-211	francium-210	radium-212
A	86	87	88
B	125	123	124
С	211	210	212
D	297	297	300

$$R_n$$
, $n = 211 - 86 = 125$
 F_r , $n = 216 - 87 = 123$
 R_a , $n = 212 - 88 = 129$.

6. 9702/12/M/J/18/No.40

A neutron is composed of one up (u) quark and two down (d) quarks. When the neutron decays to a proton, there is β -emission.

What is the change in the quark structure of the neutron due to the β-emission?

(The symbol for a neutrino is v_e and for an antineutrino is

A d
$$\rightarrow$$
 u + β^- + ν_e

$$B$$
 d \rightarrow u + β^- + v_e

C
$$u \rightarrow d + \beta^+ + \nu_e$$

D u
$$\rightarrow$$
 d + β^+ + $\overline{\nu_e}$

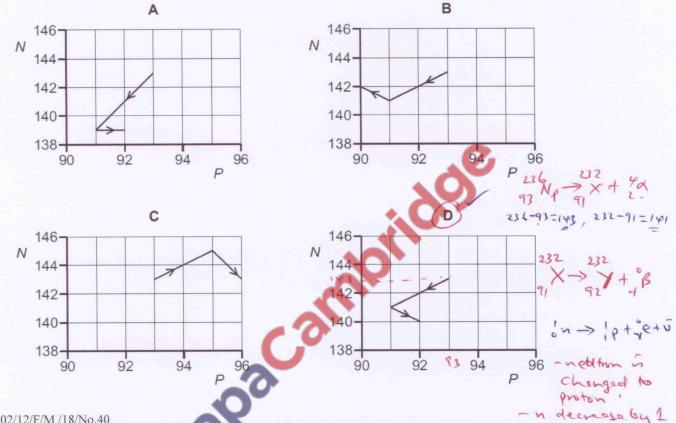
7. 9702/13/M/J/18/No.39

A nucleus of magnesium-23 undergoes β^{\dagger} decay, as represented by the nuclear equation shown.

$$^{23}_{12} Mg \, \rightarrow \, X \, + \, \beta^+ \, + \, \nu_e$$

What is nucleus X?

8. 9702/13/M/J/18/No.40


Which list contains only leptons?

- A electron, neutrino, positron
- B electron, neutrino, proton
- C electron, proton, neutron
- D neutrino, neutron, positron

9702/12/F/M /18/No.39

A nucleus of neptunium-236 contains 93 protons and 143 neutrons. This nucleus decays with the emission of an α -particle. The nucleus formed then emits a β^- particle.

Which diagram shows the changes in the number P of protons and the number N of neutrons in these nuclei?

10. 9702/12/F/M /18/No.40

An isolated neutron decays to produce a proton, a β^- particle and an antineutrino.

Which row gives the quark composition of the neutron and the proton and the type of force that gives rise to this reaction?

_	44	1n -> 1p+ B+ 5		
	duark co	mposition	type of force	udd -> uud.
	neutron	proton		
А	down, down, up	down, up, up	strong interaction	d → 4.
B	down, down, up	down, up, up	weak interaction	-B deany is due to
C	down, up, up	down, down, up	strong interaction	force.
D	down, up, up	down, down, up	weak interaction	M

increases by 1