Particle Physics – 2021 AS

1. June/2021/Paper 11/No.39

A nucleus of uranium, 235 U, undergoes a series of decays. During the series of decays, two α -particles and one β - particle are emitted.

As a result, a nucleus of actinium, Ac, is formed.

What is the correct notation for the nuclide of actinium that is formed?

- **A** 227 Ac
- **B** 227 Ac
- **C** 231 Ac

2. June/2021/Paper_11/No.40

Which particle is a fundamental particle?

- electron Α
- В hadron
- С neutron
- D proton

3. June/2021/Paper_12/No.39

A nucleus of magnesium decays into a nucleus X by emitting a β^{\dagger} particle. The decay is represented by the equation shown.

23
Mg $\rightarrow {}_{Q}^{P}X + {}_{1}^{0}\beta^{+}$

			e equation s	•	2	10 /		
				²³ ₁₂ Mg	→ ^P _Q X	+		
What are the values of P and Q?								
		Р	Q					
	Α	22	11					
	В	22	13					
	С	23	11					
	D	23	13					

4.	June/2021/Paper_12/No.40 In $β$ decay, a neutron inside a nucleus changes to a proton.						
	Wh	ich statement describes the quark composition of the nucleus during the decay?					
	Α	The number of down quarks decreases by one.					
	В	The number of down quarks increases by one.					
	С	The number of down quarks stays the same.					
	D	The number of up quarks stays the same.					
5.	Nov/2021/Paper_11/No.39						
	A uranium-238 nucleus, $^{238}_{92}$ U, undergoes a series of nuclear decays to form uranium-234, $^{234}_{92}$ U.						
	Wh	Vhich series of decays could give this result?					
	Α	emission of four β^- particles					
	В	emission of four γ-rays					
	С	emission of one α -particle and two β^- particles					
	D	emission of two α -particles and eight β^- particles					
6.	Nov/2021/Paper_11/No.40 Which combination of up (u) and down (d) quarks forms a proton?						
	Α	uuu Buud Cudd Dddd					
7.	Nov/2021/Paper_12/No.39 An unstable nucleus decays by emitting a β^+ particle.						
	Wh	ich statement is correct?					
	Α	An antineutrino is also emitted.					
	В	A neutron changes into a proton.					
	С	Mass-energy is conserved.					
	D	The nucleon number is not conserved					

8. Nov/2021/Paper_12/No.40

Which statement is **not** correct?

- A An antineutrino is a fundamental particle.
- **B** An electron is made up of a quark and an antiquark.
- **C** A neutrino is a lepton.
- **D** A neutron is composed of three quarks.

9. Nov/2021/Paper_13/No.38

When α -particles are fired at a thin metal foil, most of the particles pass straight through but a few are deflected by a large angle.

Which change would increase the **proportion** of α -particles deflected by a large angle?

- **A** using α -particles with greater kinetic energy
- B using a double thickness foil
- C using a foil made of a metal with fewer protons in its nuclei
- **D** using a source emitting more α -particles per unit time

10. Nov/2021/Paper_13/No.39

A nucleus of neptunium-236 contains 93 protons and 143 neutrons. This nucleus decays with the emission of an α -particle. The nucleus formed then emits a β ⁻ particle.

Which diagram shows the changes in the number P of protons and the number N of neutrons in these nuclei?

11. Nov/2021/Paper_13/No.40

Which combination of quarks could **not** be the quark composition of the hadron shown?

p = proton

n = neutron

 Σ^- = sigma particle of charge -e

 Σ^{+} = sigma particle of charge +e

u = up quark

	d = down quark	<					
	s = strange qua	ark					
	hadron	quark composition	100				
Α	Σ-	dds	40				
В	Σ^{+}	uds					
С	р	uud	10 ,				
D	n	udd					
Palpaco							