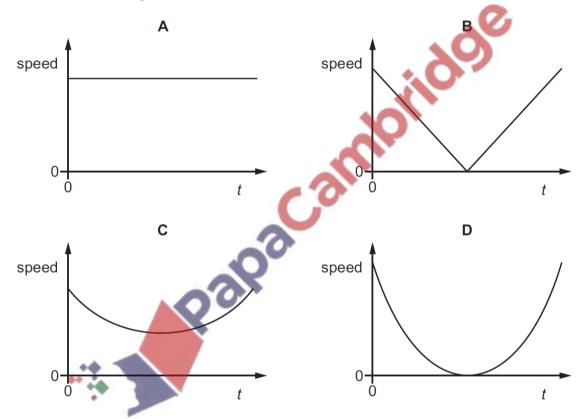

Kinematics – 2021 AS


1. June/2021/Paper_11/No.6

A projectile is launched at an angle to the horizontal at time t = 0. It travels over horizontal ground, as shown.

Air resistance is negligible.

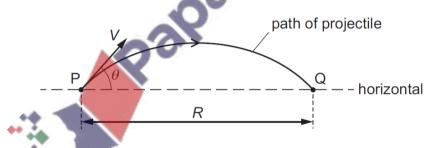
Which graph best shows the variation with *t* of the speed of the projectile from when it is launched to when it lands on the ground?

2. June/2021/Paper_11/No.7


A train, initially at rest at a station, has a uniform acceleration of $0.20 \,\mathrm{m\,s^{-2}}$ until it reaches a speed of $20 \,\mathrm{m\,s^{-1}}$. It travels for a time at this constant speed and then has a uniform deceleration of $0.40 \,\mathrm{m\,s^{-2}}$ until it comes to rest at the next station. The distance between the two stations is $3000 \,\mathrm{m}$.

What is the time taken by the train to travel between the two stations?

A 75s B 150s C 230s D 300s


3. June/2021/Paper_12/No.6

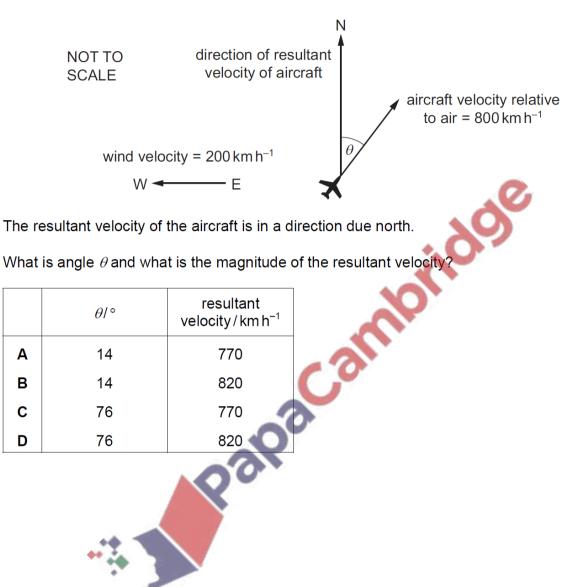
Which graph shows the variation with time t of the velocity v of an object falling vertically downwards in a vacuum?

4. June/2021/Paper_12/No.7

A projectile is fired from point P with velocity V at an angle θ to the horizontal. It lands at point Q, a horizontal distance R from P. Air resistance is negligible.

The acceleration of free fall is g.

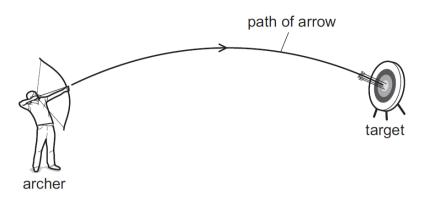
Which equation for *R* is correct?


2

A
$$R = \frac{V^2 \sin \theta \cos \theta}{g}$$

B $R = \frac{2V^2 \sin \theta \cos \theta}{g}$
C $R = \frac{V^2 \sin \theta \cos \theta}{2g}$
D $R = \frac{V^2 g \sin \theta \cos \theta}{2g}$

2

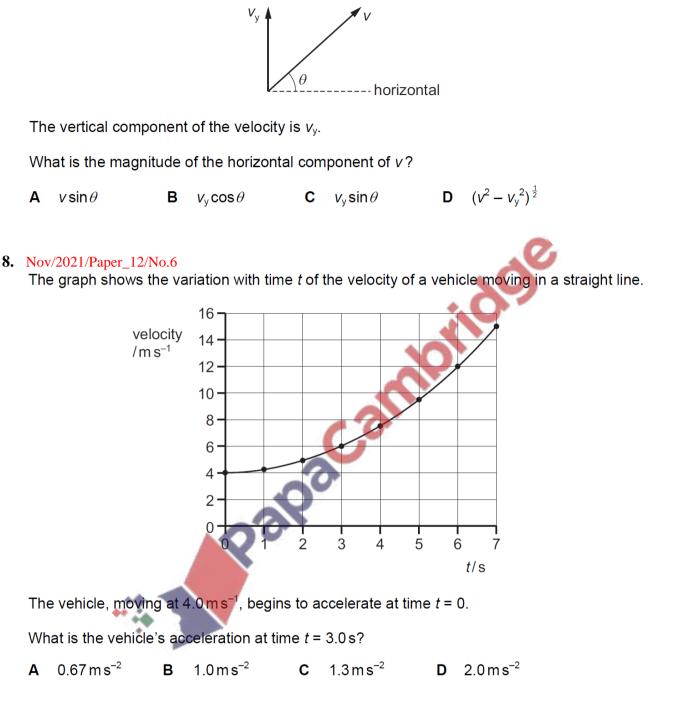

5. Nov/2021/Paper_11/No.3

An aircraft heads in a direction at an angle θ east of north with a horizontal velocity relative to the air of 800 km h⁻¹. The wind blows with a horizontal velocity of 200 km h⁻¹ from east to west, as shown.

6. Nov/2021/Paper_11/No.6

An archer shoots an arrow at a target. The diagram shows the path of the arrow.

Air resistance is negligible.


The graphs show how three different quantities p, q and r vary with time. $p = \left(\begin{array}{c} p \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} p \\ 0 \end{array} \right) \left(\begin{array}{c} p \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} p \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} p \end{array} \right) \left(\begin{array}{c} p \\ 0 \end{array} \right) \left(\begin{array}{c} p \\ 0 \end{array} \right) \left(\begin{array}{c} p \end{array} \right) \left(\begin{array}{c}$

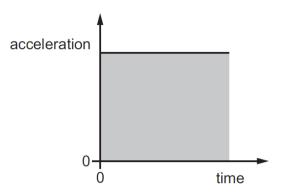
Which quantity could be the horizontal component of displacement and which quantity could be the vertical component of displacement of the arrow?

	horizontal component of displacement	vertical component of displacement
Α	р	q
в	q	r
С	** <i>r</i>	р
D	r	q

7. Nov/2021/Paper_12/No.3

A tennis ball is hit so that it leaves the racket with velocity v at an angle θ to the horizontal.

9. Nov/2021/Paper_12/No.7


A stone is projected vertically upwards from the ground at an initial speed of 15 m s⁻¹. Air resistance is negligible.

What is the maximum height reached by the stone?

A 0.76m **B** 11m **C** 23m **D** 110m

10. Nov/2021/Paper_13/No.6

The graph shows the variation with time of the acceleration of a car.

What must the shaded area under the graph represent?

- A the average velocity of the car
- B the change in velocity of the car
- C the final velocity of the car
- D the initial velocity of the car

11. Nov/2021/Paper_13/No.7

A stone is thrown horizontally off a cliff and then lands in the sea. Air resistance is negligible.

pridos

Which statement about the stone's motion is not correct?

- A The final displacement of the stone depends upon its initial horizontal velocity.
- B The stone travels with a constant horizontal component of velocity until it hits the water.
- C The stone travels with an increasing vertical component of velocity.
- **D** The time taken for the stone to hit the surface of the water depends on its initial horizontal velocity.