Particle Physics – 2021 AS

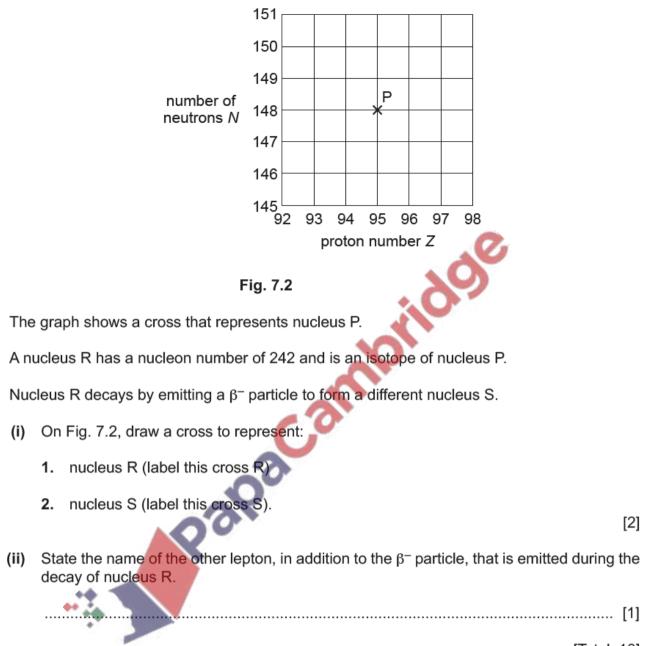
1. Nov/2021/Paper_21/No.6

(a) Complete Table 6.1 to show the masses (in terms of the unified atomic mass unit u) and charges (in terms of the elementary charge e) of α , β^+ and β^- particles.

			mass/u	charge/e					
		α-particle							
		β^+ particle							
		β^- particle		Le la	р. — — — — — — — — — — — — — — — — — — —				
(b) Car	bon-14	1 is radioactive	and decays by emission	of β^- particles.	[4]				
(i)	Nucle	ei do not contair	n β [–] particles.	NO.					
	Expla	in the origin of	the β^- particle that is em	nitted from the nucleus de	uring $β^-$ decay.				
			-0						
	U								
					[1]				
(ii)			the quark composition	n of a carbon-14 nucleu	us when it emits a				
	β⁻ pa	rticle.							
					[1]				
(iii)	Sugg	est why the β	particles are emitted with	n a range of different ene	ergies.				
					[Total: 8]				

Table 6.1

2. Nov/2021/Paper_22/No.7

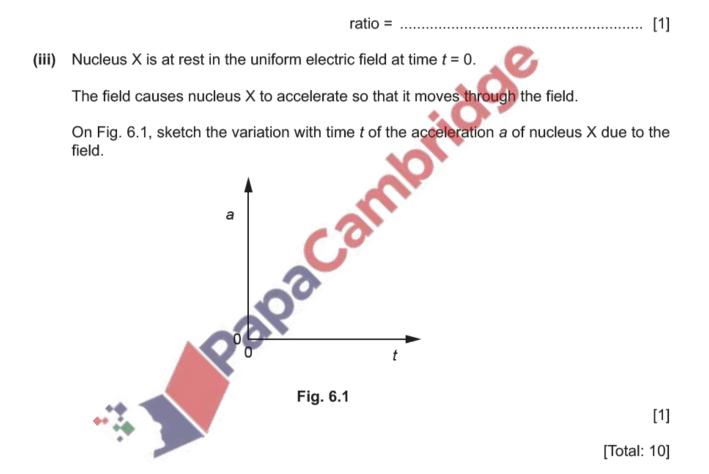

A stationary nucleus P of mass 243 u decays by emitting an α -particle of mass 4 u to form a different nucleus Q, as illustrated in Fig. 7.1.

	\bigcirc)	$1.6 \times 10^7 \mathrm{ms^{-1}}$
I	nucleus P mass 243 u	nucleus	Q	α-particle mass 4 u
BE	FORE DECAY	AI	FTER D	ECAY
	Fig	. 7.1		
The	initial speed of the $\alpha\mbox{-particle}$ is 1.6	$\times 10^7 \mathrm{ms^{-1}}.$		0
(a)	Use the principle of conservation of and the α -particle must be in opposite	momentum to site directions	o explair	why the initial velocities of nucleus Q
			ð	
		3		
(b)	Determine the initial speed v of nuc	cleus Q.		
			v =	ms ⁻¹ [2]

(c) Calculate the initial kinetic energy, in MeV, of the α -particle.

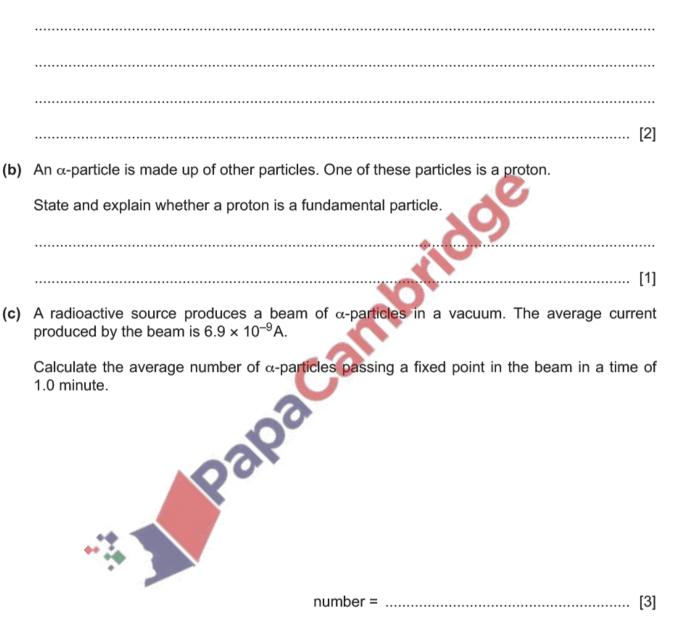
kinetic energy = MeV [3]

(d) A graph of number of neutrons N against proton number Z is shown in Fig. 7.2.


3. June/2021/Paper_21/No.6

- (a) A proton in a nucleus decays to form a neutron and a β^+ particle.
- State the name of another lepton that is produced in the decay. (i)[1] (ii) State the name of the interaction (force) that gives rise to this decay. State which of the three particles (proton, neutron or β^+ particle) has the largest ratio of (iii) charge to mass. ar Use the quark model to show that the charge on the proton is te, where e is the (iv) elementary charge. [2] (v) The quark composition of the proton is changed during the decay. Describe the change to the quark composition. (b) A nucleus X $\binom{12}{6}$ X) and a nucleus Y $\binom{16}{8}$ Y) are accelerated by the same uniform electric field. (i) Determine the ratio electric force acting on nucleus X

electric force acting on nucleus X.


(ii) Determine the ratio

acceleration of nucleus X due to the field acceleration of nucleus Y due to the field

- 4. June/2021/Paper_22/No.6
 - (a) One of the results of the α -particle scattering experiment is that a very small minority of the α -particles are scattered through angles greater than 90°.

State what may be inferred about the structure of the atom from this result.

(d) The α -particles in the vacuum in (c) enter a uniform electric field. The α -particles enter the field with their velocity in the same direction as the field.

State and explain whether the magnitude of the acceleration of an α -particle due to the field decreases, increases or stays constant as the α -particle moves through the field.

(e) A nucleus X is an isotope of a nucleus Y. The mass of nucleus X is greater than that of Y.

Both of the nuclei are in the same uniform electric field.

State and explain whether the magnitude of the electric force acting on nucleus X is greater than, less than or the same as that acting on nucleus Y.

	 •••••		 	 	•••••	 	 	••••	 ••••	 •••••		••••	 •••••		 ••••	 ••••	 	
• • • • •	 • • • • • •	• • • • • •	 	 		 	 	••••	 ••••	 ••••	••••	••••	 • • • • •	••••	 ••••	 ••••	 •••	[2]

[Total: 10]

5.			21/Paper_23/No.6
	(a)	Sta	te the quark composition of:
		(i)	a proton
			[1]
		(ii)	a neutron
			[1]
		(iii)	an alpha-particle.
	(b)	In t	he alpha-particle scattering experiment, alpha-particles were directed at a thin gold foil.
		Sta	te what may be inferred from:
		(i)	the observation that most alpha-particles pass through the foil
		(ii)	the observation that some alpha-particles are scattered through angles greater than 90°.
	(c)	Аp	roton and an alpha-particle are moving in the same uniform electric field.
		Det	ermine the ratio
			acceleration of proton due to the electric field
			acceleration of alpha-particle due to the electric field

[Total: 9]

6. March/2021/Paper_22/No.7

(a) The results of the α -particle scattering experiment provide evidence for the structure of the atom.

Result 1: The vast majority of the α -particles pass straight through the metal foil or are deviated by small angles.

Result 2: A very small minority of α-particles is scattered through angles greater than 90°.

State what may be inferred (deduced) from:

result 1 (i) **[**1] (ii) result 2. (b) A radioactive decay sequence contains four nuclei, P, Q, R and S, as shown. S Nucleus S is an isotope of nucleus Determine the proton number and the nucleon number of nucleus S. (i) proton number = nucleon number = [2] The quark composition of a nucleon in Q changes as Q decays to form R. (ii) Describe this change to the guark composition of the nucleon. [Total: 6]