Electric Fields – 2021 AS

1. Nov/2021/Paper_22/No.2

A charged oil drop is in a vacuum between two horizontal metal plates. A uniform electric field is produced between the plates by applying a potential difference of 1340 V across them, as shown in Fig. 2.1.

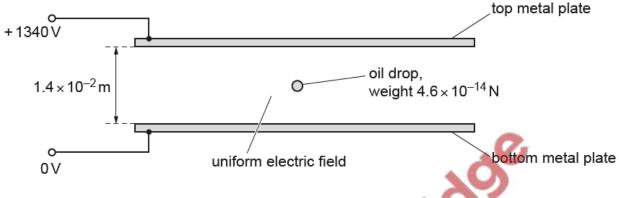
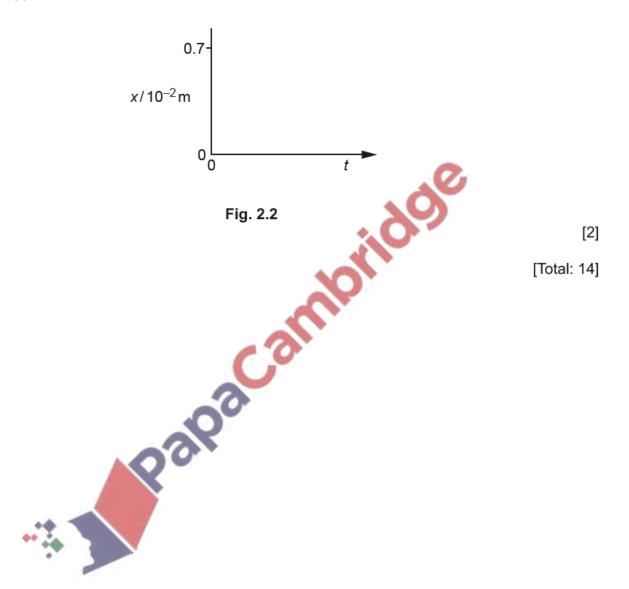


Fig. 2.1

The separation of the plates is 1.4×10^{-2} m.

The oil drop of weight 4.6×10^{-14} N remains stationary at a point mid-way between the plates.


(a) (i) Calculate the magnitude of the electric field strength.

(ii) Determine the magnitude and the sign of the charge on the oil drop.

(b)	The electric potentials of the plates are instantaneously reversed so that the top plate is at a potential of 0 V and the bottom plate is at a potential of +1340 V. This change causes the oil drop to start moving downwards.		
	(i)	Compare the new pattern of the electric field lines between the plates with the original pattern.	
		[2]	
	(ii)	Determine the magnitude of the resultant force acting on the oil drop.	
		resultant force = N [1]	
	(iii)	Space.	
	(iv)	Assume that the radius of the oil drop is negligible.	
	()	Use the information in (b)(iii) to calculate the time taken for the oil drop to move to the bottom metal plate from its initial position mid-way between the plates.	
		time = s [2]	

(c) The oil drop in (b) starts to move at time t = 0. The distance of the oil drop from the bottom plate is x.

On Fig. 2.2, sketch the variation with time t of distance x for the movement of the drop from its initial position until it hits the surface of the bottom plate. Numerical values of t are not required.

2. Nov/2021/Paper_23/No.4

An α -particle moves in a straight line through a vacuum with a constant speed of $4.1 \times 10^6 \,\mathrm{m\,s^{-1}}$. The α -particle enters a uniform electric field at point A, as shown in Fig. 4.1.

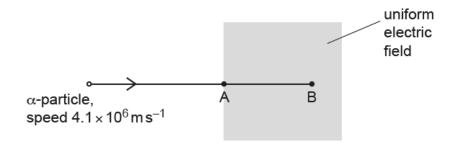


Fig. 4.1

The α -particle continues to move in the same straight line until it is brought to rest at point B by the electric field. The deceleration of the α -particle by the electric field is $2.7 \times 10^{14} \,\mathrm{m \, s^{-2}}$.

(a) State the direction of the electric field.

Palpacalitik

(b) Calculate the distance AB.

(c) Calculate the electric field strength.

(d) The α -particle is at point A at time t = 0.

On Fig. 4.2, sketch the variation with time t of the momentum of the α -particle as it travels from point A to point B. Numerical values are not required.

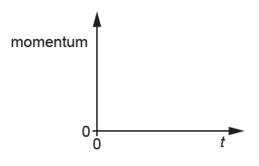


Fig. 4.2

[1]

e)	State the name of the quantity that is represented by the gradient of the graph in (1).
		[1]

- (f) A β^- particle now enters the electric field along the same initial path as the α -particle and with the same initial speed of $4.1 \times 10^6 \, \text{m s}^{-1}$.
 - (i) Calculate the kinetic energy, in J, of the β particle at point A.

kinetic energy = J [3]

(ii) State and explain the differences between the electric force on the β^- particle in the electric field and the electric force on the α -particle in the electric field.

.....[3]

(iii) The β^- particle is produced by the decay of a nucleus. State the name of another lepton that is produced at the same time as the β^- particle.

.....[1]

[Total: 15]