Alternating current - 2021 A2

1.

2021/Paper_41/No.9
State, by reference to the power dissipated in a resistor, what is meant by the root-mean-square (r.m.s.) value of an alternating voltage.
[2]
A coil is rotating freely, on frictionless bearings, at constant speed in a uniform magnetic field. This rotation causes an induced alternating electromotive force (e.m.f.) across the open terminals of the coil. The induced e.m.f. has r.m.s. value 12 V and frequency 50 Hz.
The speed of rotation of the coil is now doubled.
(i) State and explain, with reference to the principles of electromagnetic induction, the effect of the increased speed of rotation on the r.m.s. value of the induced e.m.f.
[2]
Pale Committee of the c

(ii) On Fig. 9.1, sketch the variation with time t of the induced e.m.f. E across the terminals of the coil at the **increased** speed of rotation. Your line should extend from time t = 0 to time t = 20 ms. Assume that E = 0 when t = 0.

Fig. 9.1

[3]

(c) State and explain the effect on the motion of the coil in (b) of connecting a load resistor across its terminals.

 VOO.		
 V		

[Total: 9]

2. Nov/2021/Paper_42/No.10

Fig. 10.1 shows a simple laminated iron-cored transformer consisting of a primary coil of 25 000 turns and a secondary coil of 625 turns.

Fig. 10.1

The output potential difference (p.d.) V_{OUT} is applied to a load resistor of resistance 640 Ω .

(a) (i) State the function of the iron core

[1]

(ii) Explain why the iron core is laminated.

•••

(b) The input p.d. $V_{\rm IN}$ is a sinusoidal alternating voltage of peak value 12 kV and period 40 ms.

(i) Calculate the maximum value of $V_{\rm OUT}$

 $maximum V_{OUT} = \dots V [1]$

(ii) Calculate the root-ineali-square (i.iii.s.) current in the load resiste	(ii)	Calculate the root-mean-square	(r.m.s.)	.) current in the load resisto	r.
--	------	--------------------------------	----------	--------------------------------	----

r.m.s. current = A [1]

(iii) On Fig. 10.2, sketch the variation with time t of the power P dissipated in the load resistor for time t = 0 to t = 40 ms. Assume that P = 0 when t = 0.

Fig. 10.2

(c) Explain, with reference to Fig.10.2, why the mean power in the load resistor is 70 W.

[Total: 10]

[3]

3. June/2021/Paper_42/No.10

(a) By reference to heating effect, explain what is meant by the *root-mean-square* (*r.m.s.*) value of an alternating current.

(b) The variations with time t of two currents I_1 and I_2 are shown in Fig. 10.1 and Fig. 10.2.

Fig. 10.1

Fig. 10.2

	peak value =A
	r.m.s. value = A
(ii)	Use Fig. 10.2 to determine the peak value and the r.m.s. value of the current I_2 .
(,	230 Fig. 10.2 to determine the peak value and the firms. Value of the current 12.
	peak value = A
	r.m.s. value = A [1]
(c) Th	e variation with time t of the supply voltage V to a house is given by the expression
	V = 240 sin kt
wh	ere V is in volts, t is in seconds and k is a constant with unit rad s ⁻¹ .
(i)	The frequency of the supply voltage is 50 Hz.
	Determine <i>k</i> to two significant figures.
	Palpa
	$k = \dots rad s^{-1} [2]$
(ii)	The supply voltage is applied to a heater. The mean power of the heater is 3.2kW.
	Calculate the resistance of the heater.
	resistance = Ω [2]
	[Total: 8]

(i) Use Fig. 10.1 to determine the peak value and the r.m.s. value of the current I_1 .

4. March/2021/Paper_42/No.10

The output potential difference (p.d.) of an alternating power supply is represented by

$$V = 320 \sin(100 \pi t)$$

where *V* is the p.d. in volts and *t* is the time in seconds.

(a) Determine the root-mean-square (r.m.s.) p.d. of the power supply.

(b) Determine the period T of the output.

(c) The power supply is connected to resistor R and a diode in the circuit shown in Fig. 10.1.

Fig. 10.1

(i) State the name of the type of rectification produced by the diode in Fig. 10.1.

.....[1]

(ii) On Fig. 10.2 sketch the variation with time t of the p.d. V_R across R from time t = 0 to time $t = 40 \,\mathrm{ms}$.

Fig. 10.2

(iii) On Fig. 10.1, draw the symbol for a component that may be connected to produce smoothing of $V_{\rm R}$.

[1]

[3]

[Total: 8]