Direct Sensing - 2021 A2

- Nov/2021/Paper_41/No.7 (a) State two properties of an ideal operational amplifier (op-amp). 2. [2] (b) Fig. 7.1 shows a circuit that includes an ideal op-amp and two identical resistors R. Fig. 7.1 State the names of components X and Y. Y: [1] (c) (i) Explain why the op-amp in Fig. 7.1 has only two possible output states.
 - State the name of the type of op-amp circuit in which the op-amp behaves as in (c)(i).

.....[2]

[2]
 [1]
9]

	//2021/Paper_42/No.7 An operational amplifier (op-amp) has two input terminals and one output terminal.
	State what is meant by the <i>gain</i> of an op-amp.
(b)	State two effects of pogetive feedback on the gain of an amplifier circuit that uses an on amp
(b)	State two effects of negative feedback on the gain of an amplifier circuit that uses an op-amp. 1
	2
	[2]
(c)	Fig. 7.1 shows an op-amp circuit that uses negative feedback.
	1.2 kΩ +8.0 V V _{IN O} V _{OUT}
	-8.0V

Fig. 7.1

(i) State the name of the type of circuit shown in Fig. 7.1.

.....[1]

(ii) On Fig. 7.1, label with the letter X a point in the circuit that is considered to be a virtual earth. [1]

iii) Calculate the gain of the circuit in Fig. 7.1.

(iv) Determine the value of V_{IN} when V_{OUT} is +6.5 V.

(v) Determine the value of $V_{\rm OUT}$ when $V_{\rm IN}$ is -5.4V.

[Total: 10

3. June/2021/Paper_41/No.8

The variation with temperature of the resistance of a thermistor is shown in Fig. 8.1.

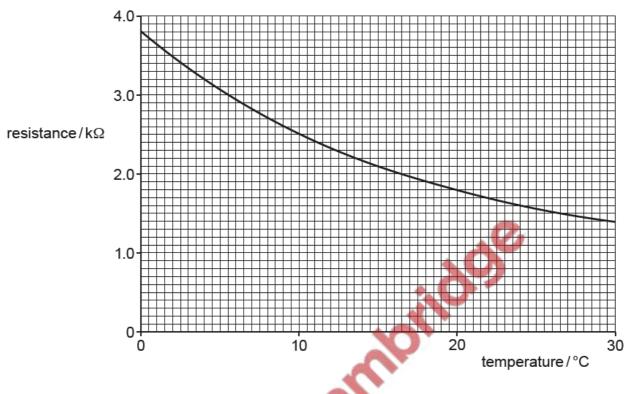


Fig. 8.1

A student includes the thermistor and an ideal operational amplifier (op-amp) in the circuit of Fig. 8.2.

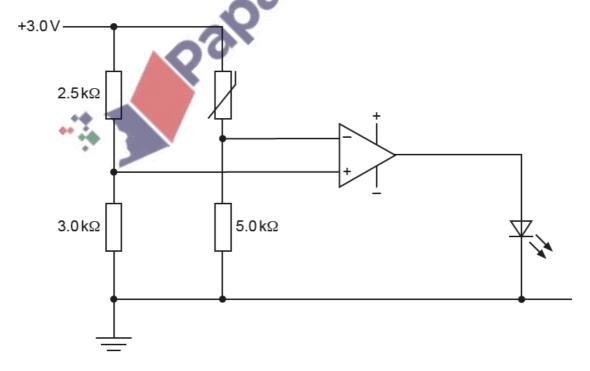
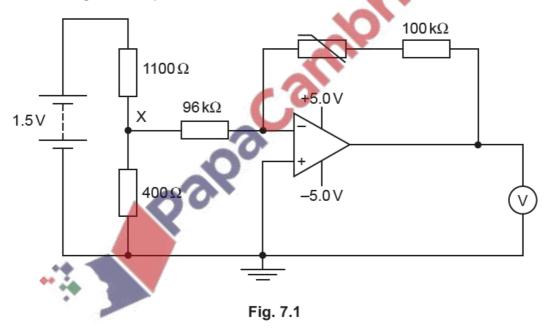


Fig. 8.2

	V ⁺ = V [2]
(b)	At 10 °C, the resistance of the thermistor is $2.5 k\Omega$.
	State and explain whether the light-emitting diode (LED) is emitting light.
	[2]
(c)	
	C
	[2]
(d)	The resistor of resistance $5.0 \mathrm{k}\Omega$ is changed to a resistor of resistance R so that the LED switches on or off at a temperature of $20^{\circ}\mathrm{C}$.
	Determine R in $k\Omega$.
	R = kΩ [3]
	[Total: 9]


(a) Calculate the potential V^+ at the non-inverting input of the op-amp.

4. June/2021/Paper_42/No.7

(a) Two properties of an ideal operational amplifier (op-amp) are infinite input impedance and infinite bandwidth.

State what is meant by:

- (b) A student uses a negative temperature coefficient thermistor in the circuit of Fig. 7.1 to indicate changes in temperature.

(i) Show that the potential at point X is 0.40 V.

	For this temperature of the thermistor, calculate the magnitude of the reading on the voltmeter.
	voltmeter reading = V [3]
(iii)	The temperature of the thermistor increases.
	State and explain the effect of this change on the magnitude of the reading on the voltmeter.
	[2]
(iv)	Explain why the amplifier circuit will no longer indicate temperature changes when the magnitude of the gain of the circuit is greater than 12.5.
	[1]
	[Total: 9]

(ii) The thermistor has a resistance of $360\,\text{k}\Omega$ at a particular temperature.

5. March/2021/Paper_42/No.7

(a) Fig. 7.1 shows the circuit diagram containing an operational amplifier (op-amp).

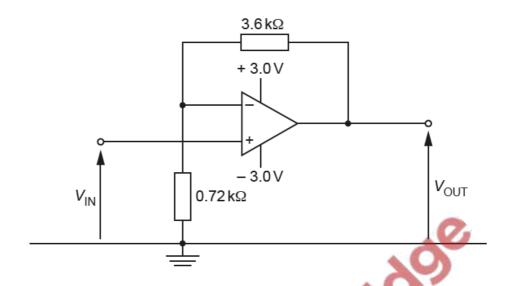


Fig. 7.1

(i) State the name of this type of amplifier.

.....[1]

(ii) Show that the gain of the amplifier is 6.0.

[1]

(iii) At time t = 0 the input potential V_{IN} is zero. V_{IN} then gradually increases with time t as shown in Fig. 7.2.

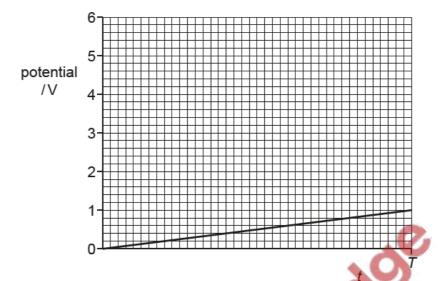


Fig. 7.2

On Fig. 7.2 sketch a line to show the variation with time t of the output potential V_{OUT} from time t = 0 to time t = T.

(iv) State how the circuit of Fig. 7.1 may be changed so that the gain of the amplifier is dependent on light intensity.

V.	F41

- (b) An op-amp is to be used to switch on a high-voltage heater.
 - (i) State the name of the component used as the output device of the op-amp.

(ii) Complete Fig. 7.3 using the device named in (i) and a diode so that the heater may be switched on when the output of the op-amp is positive.

Fig. 7.3

Palpacamin discontinuos

[3]

[Total: 9]