Work, energy and Power – 2023 Nov AS Physics 9702

1. Nov/2023/Paper_ 9702/11/No.15

A crate of mass 50 kg is pushed a distance of 6.0 m along a horizontal surface against a constant resistive force of 70 N. The crate moves at a constant speed. It is then lifted, at a constant speed, through a vertical distance of 1.2 m onto the back of a lorry.

What is the total work done in this process?

A 420 J

B 480J

C 590 J

D 1000 J

2. Nov/2023/Paper 9702/11/No.16

The input power to a television is P_{in} . The useful sound and light power emitted by the television is P_{out} .

What is the efficiency of the television?

 $\mathbf{A} \quad \frac{P_{\text{out}}}{P_{\text{in}}}$

 $\mathbf{B} \quad \frac{P_{\text{in}} - P_{\text{out}}}{P_{\text{out}}}$

 $c = \frac{P_{\text{in}}}{P}$

 $D = \frac{P_{\text{out}}}{P_{\text{in}} - P_{\text{out}}}$

3. Nov/2023/Paper 9702/11/No.17

A builder holding a brick of mass 3000 g drops the brick on his foot.

What is a reasonable estimate of the change in gravitational potential energy of the brick?

A 30 J

B 300 J

C 3000

D 30000J

4. Nov/2023/Paper_ 9702/12/No.15

An electric car travels at a constant speed of $70 \,\mathrm{km}\,\mathrm{h}^{-1}$ for $80 \,\mathrm{km}$ on a straight horizontal road and uses energy E from its battery.

The total resistive force acting on the car is proportional to (speed)². Assume that the electric motor is 100% efficient.

How much energy is used from the battery when the car travels at a constant speed of 60 km h⁻¹ for 80 km on the straight horizontal road?

A 0.73*E*

B 0.86*E*

C 1.2*E*

D 1.4E

5. Nov/2023/Paper_ 9702/12/No.16

What is meant by the efficiency of a system?

A the total energy input to the system divided by the useful energy output by the system

B the useful energy output from the system divided by the energy wasted by the system

C the useful energy output from the system divided by the total energy input to the system

D the energy wasted by the system divided by the total energy input to the system

6. Nov/2023/Paper_ 9702/12/No.17

When an object of mass m is raised through a vertical height Δh , the gain of its gravitational potential energy is ΔE_{P} .

 ΔE_{P} and Δh are related by the equation

$$\Delta E_{P} = mg\Delta h$$
,

where g is the acceleration of free fall.

The definition of which physical quantity is needed to derive this equation?

- acceleration
- momentum
- С power
- D work done

7. Nov/2023/Paper_ 9702/13/No.15

Cambidoe A wooden cylinder floats partially submerged in a bath of water. A force F is applied to the cylinder until it is just fully submerged

Which statement is not correct?

- Some of the water gains gravitational potential energy.
- В The cylinder loses gravitational potential energy.
- С Work is done by force *F* on the cylinder.
- Work is done by the upthrust on the cylinder.

8. Nov/2023/Paper_ 9702/13/No.16

A system has a useful power output of 4.0 W and a wasted power of 16 W.

What is the efficiency of the system?

- **A** 5.0%
- **B** 20%
- C 25%
- **D** 80%

A parachutist is falling towards the ground at a constant speed *v*. The rate at which she is losing gravitational potential energy is *R*.

The acceleration of free fall is g.

What is the mass of the parachutist?

- A $\frac{gv}{R}$
- $\mathbf{B} = \frac{R}{av}$
- c $\frac{2R}{v^2}$
- $D = \frac{V^2}{2R}$