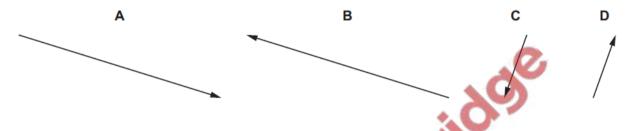
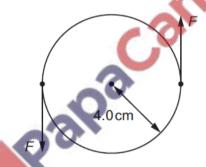
Forces – 2023 Nov AS Physics 9702


1. Nov/2023/Paper_ 9702/11/No.4

The diagram shows two coplanar forces, P and Q, drawn to scale.


Force R is given by R = Q - P.

Which diagram represents R?

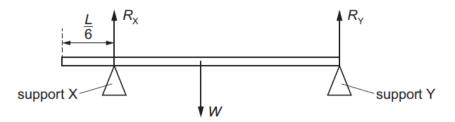
2. Nov/2023/Paper_ 9702/11/No.11

A minimum torque of 20 Nm must be applied to the lid of a jar for it to open. The radius of the lid is 4.0 cm.

What is the minimum force F that must act on each side of the lid in order to open it?

A 2.5 N

В


N

C 250 N

D 500 N

3. Nov/2023/Paper_ 9702/11/No.12

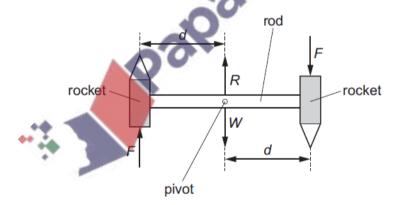
A uniform bar of length L and weight W rests horizontally on two supports X and Y.

Support X exerts a vertical force R_X at a distance of $\frac{L}{6}$ from one end of the bar.

Support Y exerts a vertical force R_Y at the other end of the bar.

The bar is in equilibrium.

What is the ratio $\frac{R_X}{R_Y}$?


- A $\frac{3}{2}$
- $B = \frac{2}{3}$
- $c = \frac{3}{5}$
- $D = \frac{2}{5}$

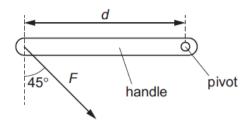
4. Nov/2023/Paper_ 9702/11/No.13

A type of firework is made by connecting two rockets, facing in opposite directions, to a rod, as shown.

The rod is attached to a frictionless pivot so that the firework can rotate in a vertical plane.

The firework has weight W. The pivot exerts a force R on the rod that is equal and opposite to W.

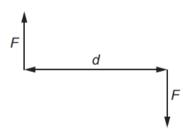
Each rocket exerts a force of magnitude F on the rod at a perpendicular distance d from the pivot. The forces exerted by the rockets are always in opposite directions.


Air resistance is negligible.

Which statement is correct?

- A The firework is in equilibrium because the resultant force acting on it is zero.
- **B** The firework is in equilibrium because the resultant torque acting on it is zero.
- **C** The firework is not in equilibrium because the resultant force acting on it is not zero.
- **D** The firework is not in equilibrium because the resultant torque acting on it is not zero.

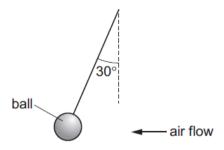
5. Nov/2023/Paper_ 9702/12/No.11


A force F is applied at an angle of 45° to a door handle at a distance d from the pivot of the handle, as shown.

What is the moment of the force about the pivot?

- B Fd
- C $Fd\sqrt{2}$
- 2Fd

6. Nov/2023/Paper_ 9702/12/No.12
A couple consists of two forces, each plane.
The perpendicular distar A couple consists of two forces, each of magnitude F, that act in opposite directions in the same



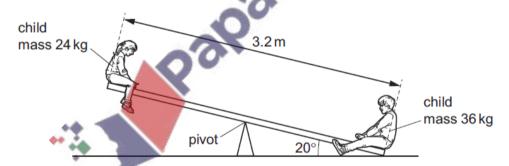
What is the torque of the couple?

- 2Fd

7. Nov/2023/Paper_ 9702/12/No.13

The diagram shows an experiment to determine the force exerted on a ball by a horizontal air flow.

The ball is suspended by a light string and weighs 0.15 N.

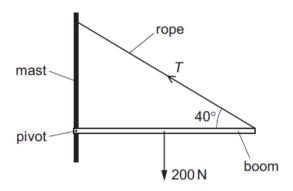

The deflection of the string from vertical is 30°. The ball is in equilibrium.

What is the force on the ball from the air flow?

- **A** 0.075 N
- **B** 0.087 N
- C 0.26 N
- 0.30 N

8. Nov/2023/Paper_ 9702/13/No.11

A uniform rigid beam of length 3.2 m is pivoted at its centre. Two children sit at the opposite ends of the beam, as shown.


One child has a mass of $24 \, \text{kg}$. The other child has a mass of $36 \, \text{kg}$. The heavier child causes one end of the beam to permanently rest on the ground, so that the beam makes an angle of 20° to the horizontal ground.

What is the moment of the weight of the 24 kg child about the pivot?

- **A** 72 N m
- **B** 130 N m
- C 350 N m
- **D** 380 N m

9. Nov/2023/Paper_ 9702/13/No.12

Two parts of a sailing boat are the mast and the boom. The mast is a vertical rigid beam and the boom is a horizontal rigid beam. One end of the boom is attached to the mast by a pivot. The other end of the boom is connected to the mast by a rope, as shown.

The rope is at an angle of 40° to the horizontal and exerts a tension force T on the boom. The weight of the boom is $200\,\mathrm{N}$. The mass of the boom is uniformly distributed along its length. The boom is in equilibrium.

What is the magnitude of T?

A 130N B 160N C 260N D 310N

10. Nov/2023/Paper_ 9702/21/No.2(a)

A hot-air balloon floats just above the ground. The balloon is stationary and is held in place by a vertical rope, as shown in Fig. 2.1.

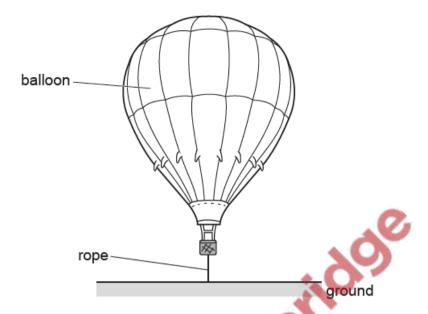


Fig. 2.1

The balloon has a weight W of 3.39×10^4 N. The tension T in the rope is 4.00×10^2 N. Upthrust U acts on the balloon.

The density of the surrounding air is 1.23 kg m⁻³.

- (a) (i) On Fig. 2.1, draw labelled arrows to show the directions of the three forces acting on the balloon. [2]
 - (ii) Calculate the volume, to three significant figures, of the balloon.

(iii) The balloon is released from the rope.

Calculate the initial acceleration of the balloon.

acceleration = ms^{-2} [3]

11. Nov/2023/Paper_ 9702/23/No.3(a)

ambildoe (a) State the conditions for a system to be in equilibrium.

2	
	ro