

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, Candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
1			
2			
3			
4			
5			
6			
Total			

This document consists of 19 printed pages and 1 blank page.

www.papacambridge.com Fig. 1.1A shows a buttercup, Ranunculus cymbalaria. Fig. 1.1B shows details of a fix 1 the same plant.

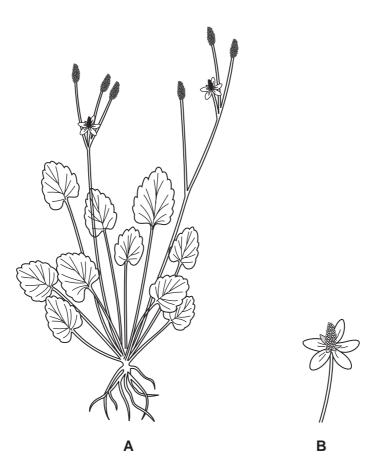
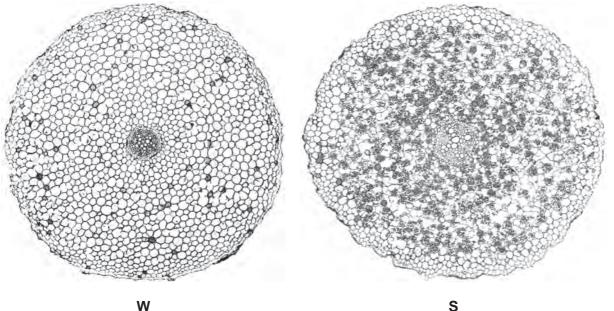



Fig. 1.1

(a) Explain, using only features visible in Fig. 1.1, why Ranunculus cymbalaria is classified as a dicotyledonous plant rather than as a monocotyledonous plant.

..... [2]

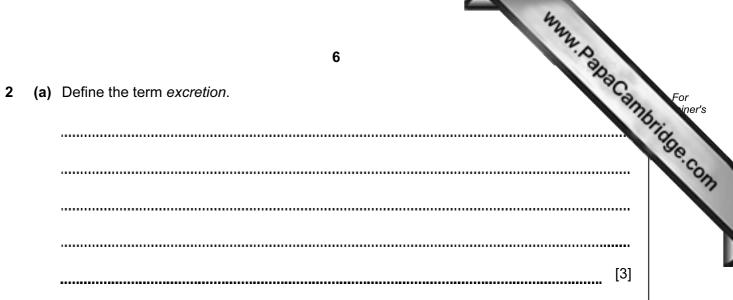
www.papaCambridge.com Fig. 1.2 shows a transverse section through a buttercup root at the end of the color (W) and at the end of the warm, moist summer (S). At the end of the winter, the contain very few starch grains. At the end of the summer, most of the root cells contain many starch grains.

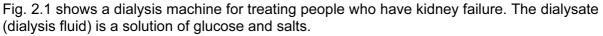
W

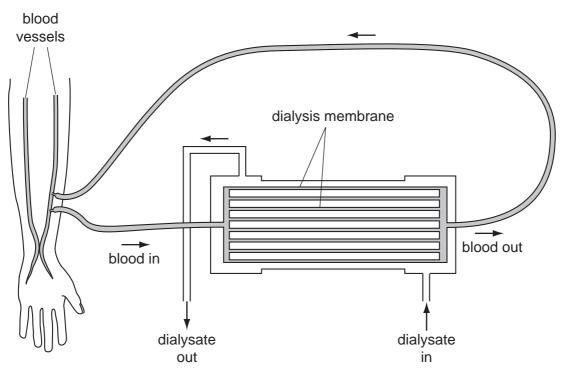
Fig. 1.2

(b) Suggest why there are few starch grains in the cells of W compared with a large number of starch grains in the cells of S.

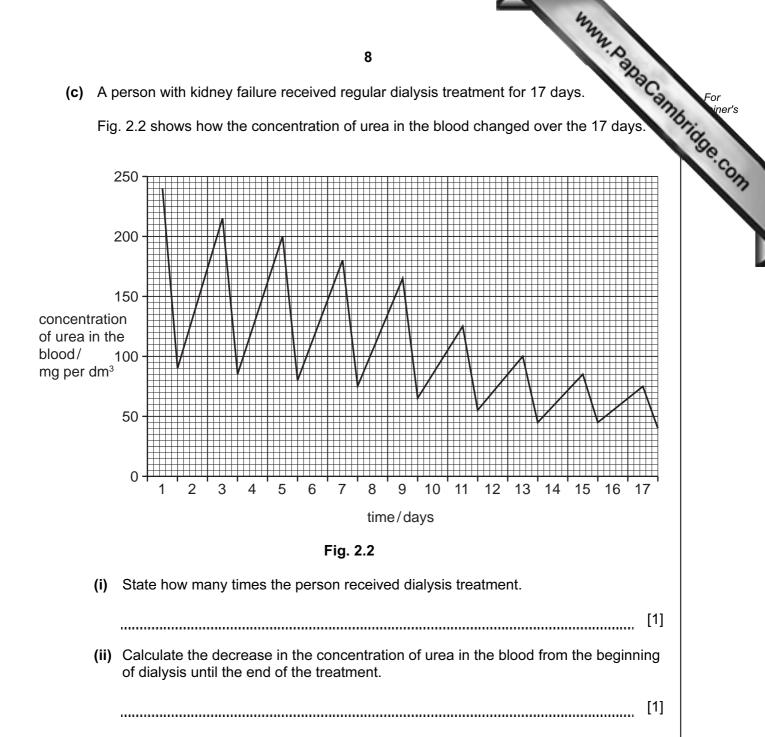
..... [3] (c) Describe how enzymes in root cells synthesise starch. _____ [3]


3


	444	
	4	
(d)	As temperature is increased, for example from 10 °C to 30 °C, enzyme increases.	Samp For iner's
	Explain how increasing temperature affects enzyme activity.	'igge.cc
		·····
		···· L
		[2]


[Total: 10]

BLANK PAGE

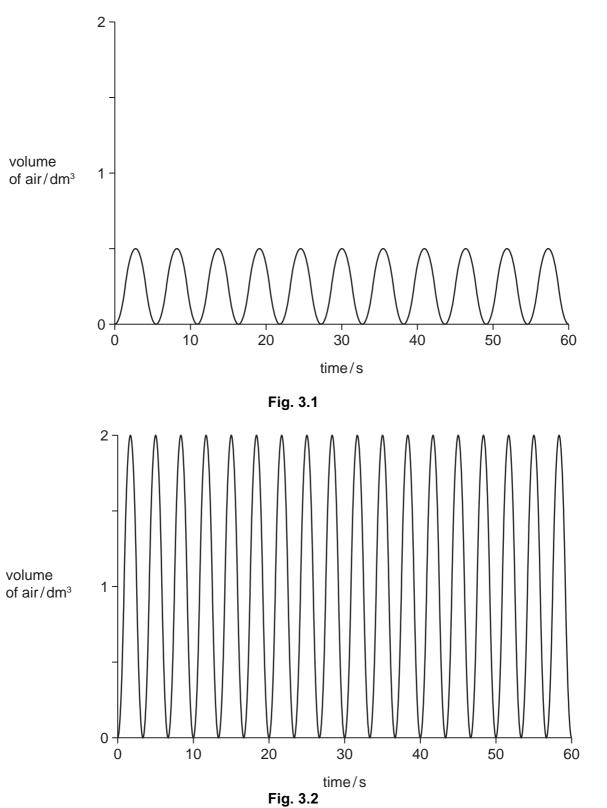


(b) Explain how, when the patient is receiving dialysis treatment

(i) the loss of plasma proteins and red blood cells is prevented,

[1]

	4744 ·		
	7		
(ii)	the normal glucose concentration of the blood is maintained.	Camp	For iner's
			Sec.
			913
		[2]	


	42	
	9	
	202	
(iii)	9 Describe the changes that occur in the urea concentration in the blood over period shown in Fig. 2.2. You will gain credit for using the data in Fig. 2.2 in you answer.	For iner's
		COM
		1
	[3]	
(iv)	Explain the changes in urea concentration in the blood as shown in Fig. 2.2.	
	[4]	
	[Total: 15]	

3 (a) In the space below write a balanced chemical equation for anaerobic respiration muscles.

......→.....

www.papaCambridge.com Some students investigated the breathing of a 16-year old male athlete. Fig. 3.1 shows the pattern of his breathing for 60 seconds when resting. Fig. 3.2 shows the pattern of his breathing while he took some exercise for 60 seconds.

.....

Table 3.1 shows a summary o	11 f the results obtained by the Table 3.1	students.	er's
	breathing at rest	breathing during exercise	on
volume of air breathed in with each breath / dm ³	0.5		1
rate of breathing / number of breaths per minute	11		
volume of air breathed in per minute / dm ³	5.5		

(b) Using information from Fig. 3.2, complete Table 3.1.

Write your answers in Table 3.1. [3]

(c) Explain the effect of exercise on the student's breathing.

[5]

.....

[5]

[Total: 15]

		13 nan immunodeficiency virus (HIV) infects white blood cells. The virus is represented white blood cells.
		13
		nan immunodeficiency virus (HIV) infects white blood cells. The virus is represented white blood cells.
(a)	Des	cribe what may happen to viruses that leave infected white blood cells.
		[2]
(b)	Des	cribe the possible long-term effects of HIV on the immune system.
		[3]
(c)	Pec	ple with HIV may be treated with a variety of drugs.
	(i)	Define the term <i>drug</i> .
		[1]
	(ii)	Explain why antibiotics cannot be used to control HIV.
		[2]
		[Total: 8]

Ì

www.papaCambridge.com In many parts of the world, raw sewage drains into rivers. Raw sewage contains 5 matter which acts as food for bacteria. The breakdown of organic matter by bacteria ha effect on the oxygen concentration and species of invertebrate animals in rivers.

Fig. 5.1 shows the changes in oxygen concentration along a river.

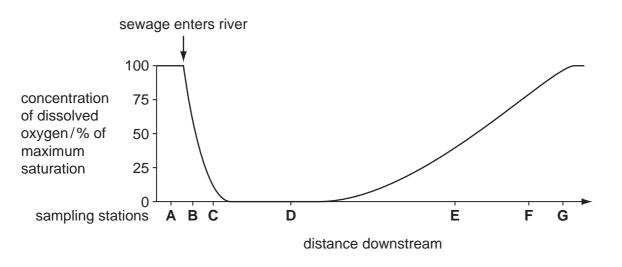


Table 5.1 shows the invertebrate animals at seven sampling stations, A to G, along the river.

Table 5.1

key

✓ invertebrate animal present

invertebrate						sampling stations			
animals		В	С	D)		Ε	F	G
stonefly nymph	\checkmark								\checkmark
freshwater shrimp	\checkmark							\checkmark	\checkmark
caddis fly larva	\checkmark							\checkmark	\checkmark
mayfly nymph	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark
midge larva	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark
rat-tailed maggot		\checkmark	\checkmark	✓					
water louse	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark
wandering snail							\checkmark	\checkmark	\checkmark
tubifex worm	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark

	472
	15 ¹⁴ D
a) (i)	15 Describe the changes that occur to the oxygen concentration in the river as in Fig. 5.1. You will gain credit for using the data in Fig. 5.1 in your answer.
	[4]
(ii)	Name the invertebrate animal that is only found in water with the highest oxygen concentration.
	[1]
(iii)	Name the two invertebrate animals that tolerate the lowest oxygen concentrations.
	[1]
(iv)	Suggest and explain the changes in the number of different species of invertebrate animals along the river, as shown in Table 5.1.
	[3]

Sewage treatment works receive raw sewage.

This sewage contains food molecules, such as cellulose, starch, protein and fat.

(b) Explain how bacteria breakdown these nutrient molecules.

16 vage treatment works receive raw sewage. s sewage contains food molecules, such as cellulose, starch, protein and fat. Explain how bacteria breakdown these nutrient molecules.	
16	
vage treatment works receive raw sewage.	For
s sewage contains food molecules, such as cellulose, starch, protein and fat.	high liet's
Explain how bacteria breakdown these nutrient molecules.	Se. Co.
	13
	٦
	I
[4]	

The concentration of nitrate ions is often very high in the water leaving a sewage treatment works.

In some places, the water passes through a series of reed beds as shown in Fig. 5.2.

The water leaving the reed beds and entering the river contains very low concentrations of nitrate ions.

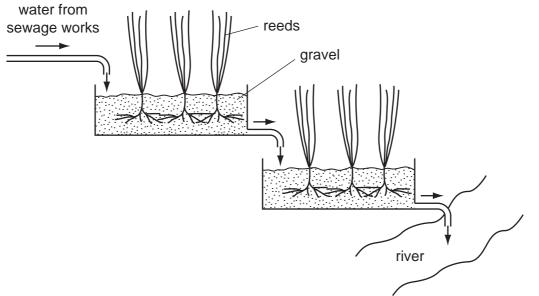
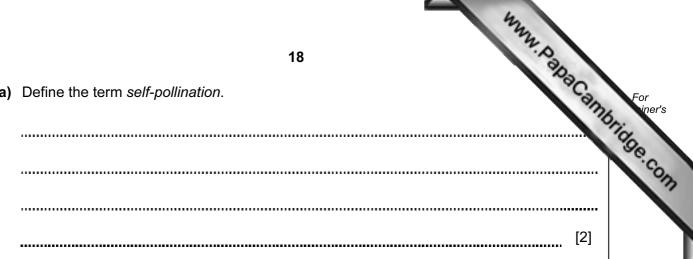



Fig. 5.2

	42
	17
(c)	17 Explain two ways in which the concentration of nitrate ions may be reduced water flows through the reed beds.
	[3]
(d)	Some bacteria that live in reed beds release methane. Other sources of methane are cattle and flooded rice fields.
	Explain the environmental consequences of an increase in the methane concentration in the atmosphere.
	[3]
	[Total: 19]

(a) Define the term self-pollination. 6

Snapdragon plants have flowers with three colours: red, pink and white.

Some students investigated the inheritance of flower colour in snapdragons.

In cross 1 they cross-pollinated plants that were homozygous for red flowers with plants that were homozygous for white flowers. They collected and planted the seeds from cross 1. All of the resulting plants had pink flowers.

In cross 2 they self-pollinated all the pink-flowered plants and found that in the next generation there were red-flowered plants, white-flowered plants and pink-flowered plants.

(b) Complete the genetic diagrams to show how flower colour is inherited in snapdragon plants.

Use the symbol **I**^R for the allele for red flowers and **I**^W for the allele for white flowers.

cross 1	parental phenotypes	red flowers	×	white flowers
	parental genotypes		×	
	gametes			
	offspring genotypes			
	offspring phenotypes		pink flowers	

18

	19 MAY 27
ss 2	parental phenotypes pink flowers × pink flowers
	parental genotypes ×
	19 parental phenotypes pink flowers × pink flowers parental genotypes × gametes
offspring genotyp	
ratio of o	ffspring bes[4]
(c) And	ther student cross-pollinated pink-flowered plants with white-flowered plants.
Cor	plete the genetic diagram to show the results that the student would expect.
Cor	plete the genetic diagram to show the results that the student would expect. phenotypes pink flowers \times white flowers
Cor	phenotypes pink flowers × white flowers genotypes ×
Cor	phenotypes pink flowers \times white flowers
Cor	phenotypes pink flowers × white flowers genotypes ×
Cor	phenotypes pink flowers × white flowers genotypes ×
Cor	phenotypes pink flowers × white flowers genotypes ×
offspring	phenotypes pink flowers × white flowers genotypes ×

	20	
(d)	20 Explain the advantages of sexual reproduction to a species of flowering plant, such the snapdragon.	For viner's
		Se.co
		517
	[4]	
	[Total: 13]	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of