CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0610 BIOLOGY

0610/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.PapaCambridge.com

Page 2	Page 2 Mark Scheme		Paper
	IGCSE – October/November 2012	0610	33

		Page 2	Mark Scheme IGCSE – October/Novem	ber 2012		yllabus 0610	Paper 33
Question	Expec	ted Answers		Marks	Additional	I Guidance	
1 (a)	body divided into/segmented three parts / head, thorax and abdomen (one pair of) antennae / feelers wings three pairs / 6 legs compound eyes		[max 3]		ted body und ept arthropo		
(b)	arthropod / Arthropoda		[1]	must have so accept a		ut reject anthropod	
(c)	nu mit chl pla	romosome cleus tochondria loroplast asmid cleolus		[2]	Note: Apply	y list rule	
(d)	 two groups: 1 – 6 and 11 & 12 migrate to New Zealand 1 – 6, New Caledonia / indirect / migration A 11&12, direct (Australia) / migration B correct example of (evolutionary) relationship / DNA similarity, e.g. 13 & 14 most distantly related from others / 9 & 10 most closely related to each other ref to, clade(s) / cladogram 			the encentral species of these circuits	- C ₁	New Zealand New Caledonia Australia New Zealand	
				[max 3]	72		Australia

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	33

		Page 3	Mark Sche IGCSE – October/No			Syllabus 0610	Paper 33	MM. Papac
(e)	1 2 3 4 5 6 7 8 9	different competition between i struggle for existence ref to variation survival of fittest / thos survive reproduce, pass on th mutations / changes in change in the gene po	se that are better adapted eir alleles; A genes I traits n DNA	[max 4]		ditions on different		MMM. Papa Co.
				[Total: 13]			
2 (a)	1 2 3	respiration / deaminat or in the body	,	Ig fae A 'sul toxic ism / cells Mpt 3		ostances that cau waste products o e routes from bo	efecation, digestion AW use harm' / 'harmful' of metabolism / AW = 2 ndy ples, e.g. CO ₂ , urea, sal	
(b)	pr	ocess that occurs in the	e kidney tubule	letter from F	g. 2.1]		
		tration of blood	-	H C		-		
	re	absorption of most of th	ne solutes in the filtrate					
		ater is absorbed by osn	nosis to determine the	G				
	ur	nfiltered blood returns to	the renal vein	D/E				
				[4]				

Page 4	Mark Scheme	Syllabus	Paper	
	IGCSE – October/November 2012	0610	33	

component	blood	filtrate	urine	and models for the
red blood cells	√	×	*	one mark for the filtrate column
white blood cells	✓	×	×	one mark for the
plasma proteins	✓	×	*	urine column
glucose	✓	✓	*	
urea	✓	✓	✓	
salts	✓	✓	✓	
water	✓	✓	✓	
		•	[2]	1

[Total: 9]

3	(a)	(i)	amylase A carbohydrase		Ig odd spelling
		(ii)	 starch is not soluble / large /complex fungus does not, secrete / produce, amylase for absorption (of glucose) / AW ref to, respiration / growth, (of fungus) as nutrient, for fungus / fermentation / AW 	[max 2]	Mpt 2 A ecf from (i) / carbohydrase / enzyme to digest starch
	(b)	1 2 3 4 5	 other fungi / bacteria / virus / other microorganisms compete for nutrients reduce productivity / yield / quality contaminate the product / produce toxic <i>or</i> harmful product / ORA 		R contaminate unqualified

www.papaCambridge.com

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	33

	Page 5	Mark Scheme		Syllabus	Paper
		IGCSE – October/November 2	012	0610	33
1 2 3 4	chain animals are, at seco OR plants are, autot (energy lost) in anim metabolic process /	een / within, trophic levels / along food nd trophic level / primary consumers rophs / producers / first trophic level lal respiration / heat / (named) movement lt that is inedible / not digestible (in		Ig ref to healthy ref to 100→10→	
5 6	ref to 10% energy tra less pollution (from f		[max 3]	Mpt 6 A plants u	se CO ₂
1 2 3 4 5 6 7 8	mycoprotein can be fermenters) less (animal) waste better for animal wellower in fat / lowers suitable for, vegetari	risk of <u>heart</u> disease	[max 3]	_	le e, help food shortages, more trients, easier to digest
1 2 3 4 5 6	(starch) this comes from crop (fungus) still need to (manufacture) requir rate of food supply of AVP e.g. does not come	be grown res energy rannot keep up due to overpopulation ontain all nec nutrients, may be to eating mycoprotein foods / needs	[max 3]	R required mach	ninery

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	33

		Page 6	Mark Scheme IGCSE – October/November 2	012	Syllabus 0610	Paper 33	
4 (a)		₁₂ O ₆ ₁₃ H ₆ O ₃		[2]	ignore word equignore energy / AR if 2 is not include RO2, CO2, H2O of	ATP ded for C ₃ H ₆ O ₃	
(b)		ps contracts ps relaxes		[2]	accept ref to antagonistic pair of muscles		
(c)	1 2 3 4 5 6 7	levels off / increase slow data quote for consump After:	tion during the race ediately at the end of the race / at 18 er exercise resting level	[max 4]	Units must be stated at least once e.g. of Mpt 3: A plateaus between 2.1 – 2.4 dm³ min ⁻¹ Maximum is 2.4 dm³ min ⁻¹ , 3 – 4 mins /at start / 5 to 8 or 9 mins to reach maximum e.g. of Mpt 7: A Resting rate at 0.25 dm³ min ⁻¹ , 9 – 10 mins / at 18 to 27 or 28 min to reach original level		
(d)	 1 oxygen debt 2 not enough oxygen supplied (to muscles) during exercise 3 to muscles 4 anaerobic respiration 5 lactic acid produced 6 lactic acid, broken down / respired / converted to glucose CO₂ and water / oxidized 7 requires (extra) oxygen 8 oxygen restored to haemoglobin 9 AVP. e.g. restored to myoglobin (in muscles) 		[max 5]	Mpt 6 R removed	c acid throughout the answer		
	9	AVP. e.g. restored to my	yogiobin (in muscles)	[max 5]	ig lowers pH, mu	iscies suii / cramps	

Mbridge:com

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	33

		Page 7	Mark Scheme IGCSE – October/November 2	012	Syllabus 0610	Paper 33
50		(80 – 30 = 50) 50 / 30 x 100 OR max – min / origina				Paper 33 correct answer (167) et, allow one mark for the
	(ii)	 more crops being less land available farming has becor subsistence / AW less use of crop ro monoculture / less prevents soil become (compounds) 	ming depleted of nitrogen op plants have high demand	[max 3]		
(b)	(i)	acids by (named) decon amino acids / prot deamination descr urea converted to ammonia / ammor nitrite to nitrate ior	ribed ammonia nium ions, to nitrite / nitrate ions	[max 4]		
	(ii)	 in root nodules nitrogen fixation / ammonia / amino transferred to leguincreases N (in so reduces need to under the reduces are good) 	se chemical fertilisers	[max 3]		

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	33

								My	
			Page 8	Mark Scheme		Syllabus	Paper	.0	
				IGCSE – October/November 2	012	0610	33	Pac	
	(c)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	(fixed) water plants die algae / plants, decayed baerobic respiration oxygen concentration de animals / fish, migrate / color land reduction in organic cont soil / fertilizer, blown / was soil increase in soil acidity atmosphere increases loss of nitrous nitrous oxide / NO _x , is a general solution of the solution of	tances released by algae by bacteria creases in context die, in context sent of soil ashed / leached, away A erosion of oxide / NO _x to the atmosphere greenhouse gas abustion of fossil fuels / in production al warming, in context	[max 5]	Mpt 15 linked w	ith mpt 13 or 14 yndrome, accumulati	ion in dioxins	Mbridge com
					[Total: 17]				
6	(a)	(i)	transport of oxygen		[1]				
		(ii)	amino acids		[1]	A polypeptides, I	naem		
		(iii)	iron / Fe / Fe ²⁺		[1]				

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	33

	Page 9	Mark Scheme		Syllabus	Paper	.03
		IGCSE – October/November	2012	0610	33	-
o)	1 fewer red blood cells			Ig ref to malaria		MANN. POR
	2 less elastic / less flexib	less elastic / less flexible / sickle-shaped, red blood cells				
	3 haemoglobin is abnorm					
		ess efficient at transporting oxygen				
	5 less respiration					
		exhaustion / less active /				
	feeling faint / breathles					
	7 death of tissues linked	to oxygen supply				
	8 <u>capillaries</u> are blocked					
	9 pain 10 'sickle cell crisis'					
	11 slow / poor, growth12 susceptible to infection	e e				
	13 reduced life span	5				
		regnancy, kidney disease	[max 3]			
(c)	1 malaria is common in A					
	people who are, hetero					
	3 have, sickle cell trait / r			Mpt 4 R immune		
	4 protected / AW, agains					
		Ils are less prone to infection	[0]	A description of a	-14:	
	6 Hb ^s continues to appea	ar due to selective advantage / AW	[max 3]	A description of se	election	

Inbridge com

Page 10	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	33

	Page 10	Mark Scheme		Syllabus	Paper	.0
L		IGCSE – October/November 2	2012	0610	33	Day
heterozygou Hb ^A Hb ^S x Hb Hb ^A , Hb ^S + H	Hb ^A is dominant / Hb ^S is recessive / (both) parents are, carriers / heterozygous Hb ^A Hb ^S x Hb ^A Hb ^S Hb ^A , Hb ^S + Hb ^A , Hb ^S (Hb ^A Hb ^A , Hb ^A Hb ^S , Hb ^A Hb ^S) Hb ^S Hb ^S		[max 3]	ECF for Mpt 2 ar	if genetic diagram in a sind 3 in diagram key orrect derivation in otypes for parents	/. Mpt 2
2 causes	· ·			A e.g. of radiatio	n e.g. gamma rays	