

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

9254380606

BIOLOGY 0610/32

Paper 3 Theory (Core)

May/June 2021

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

1 Fig. 1.1 is a diagram of the human gas exchange system.

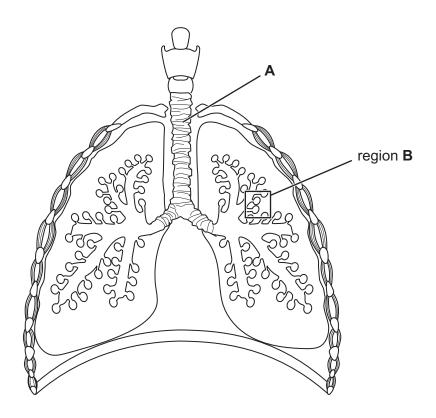


Fig. 1.1

tify using a label line and a label on Fig. 1.1 :
--

	a lungthe diaphragm.	[2]
(ii)	State the name of structure A in Fig. 1.1.	
		[1]
(iii)	Oxygen molecules pass through structure A on their way to the red blood cells.	
	State the names of three other structures in the gas exchange system that oxygmolecules must pass through on their way to the red blood cells.	jen
	1	
	2	
	3	
(i)	State the name of the process that moves ovugen into the red blood cells	[3]
111/1	State the name of the brocess that moves byvoen into the red blood cells	

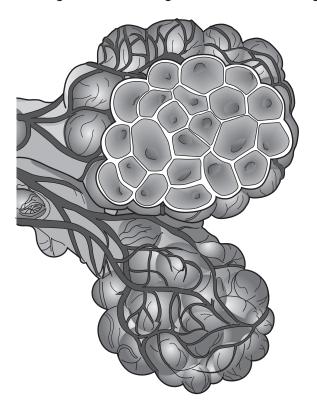


Fig. 1.2

	(i)	State the name of the main blood vessel that delivers blood to the lungs.
		[1]
	(ii)	The gas exchange surface shown in Fig. 1.2 is permeable to make gas exchange efficient.
		List two other features of gas exchange surfaces.
		1
		2[2]
(c)	Оху	gen concentration is higher in inspired air than in expired air.
	Sta	te one other way the composition of inspired air differs from the composition of expired air.
		[1]
		[Total: 11]

2

		4
(a)	(i)	List the chemical elements in a carbohydrate.
		[1]
	(ii)	State the name of one chemical element that is found in a protein but is not found in a carbohydrate.
		[1]
(b)	A va	2.1 shows a variegated leaf which uses photosynthesis to make carbohydrates. ariegated leaf has green parts that contain chlorophyll and white parts that do not contain prophyll.
		green white

Fig. 2.1

(1)	State the word equation for photosynthesis.	
		[2]
(ii)	The carbohydrate produced by photosynthesis can be stored as starch in the leaf.	
	A plant with variegated leaves used up its store of starch because it was placed in dark.	the
	Explain why the plant used up its store of starch when it was placed in the dark.	
		[2]

(iii) The plant with variegated leaves was then left in a warm, sunny place. After a few days, a leaf from this plant was removed and tested for starch.

Predict the results of the starch test by placing ticks (✓) in Table 2.1.

Table 2.1

part of leaf	starch present	starch absent
green		
white		

	(iv) State the name of the	mineral ion that is needed to make chlorophyll.					
		[1]					
(c)	Starch is a large molecule.						
	The boxes on the left show	w the names of some other large molecules.					
	The boxes on the right sho	ow some sentence endings.					
	Draw five lines to make five	ve correct sentences.					
	large molecule	sentence endings					
	Cellulose						
		is made from amino acids.					
	DNA						
		is made from fatty acids and glycerol.					
	Glycogen						
		is made from glucose.					
	Oil						

[5]

[1]

[Total: 13]

is the genetic material.

Protein

3 (a) Fig. 3.1 is a diagram showing stages during the development of a human embryo and fetus.

Fig. 3.1

(i) Put a tick (\checkmark) in the box that describes a human embryo.

a ball of cells	
a cell with energy stores and a jelly coating	
a cell with a flagellum	
is made of cells that have a cell wall	

[1]

(ii) Table 3.1 shows some of the events (D to J) that occur between fertilisation and birth.
The events are not in the correct order.

Table 3.1

D	a baby is born
Е	complexity of the fetus increases more than size
F	a zygote is formed
G	embryo implants into the wall of the uterus
Н	size of the fetus increases more than complexity
J	the zygote divides by mitosis to produce two cells

Put the events into the correct sequence by ordering the letters.

One has been done for you.

J		

[3]

(b) Complete the sentences using the words and phrases from the list.

Each word or phrase may be used once, more than once or not at all.

afterb	oirth an	nniotic sac	amniotic fluid	cervix
oviduct	penis	umbilical cor	d uterus w	all vagina
Birth begins wh	en the strong n	nuscles of the		start to contract.
This causes the		to di	late. The	can
break at this sta	age. The muscl	es start to push th	e baby out. The ba	by moves through the
		The	is tie	ed and cut. Finally the
	is	delivered.		[6]

[Total: 10]

(a)	(i)	Define the term genetic engineering.
		[2]
	(ii)	State one example of genetic engineering.
		[1]

(b) Fig. 4.1 is a diagram of a fruit fly with normal wings and a fruit fly with vestigial wings.

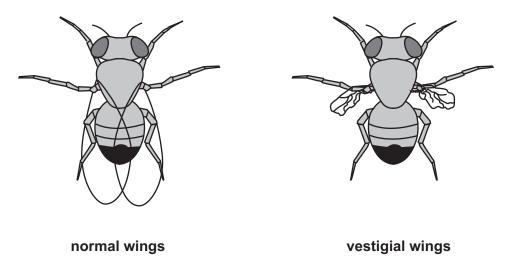


Fig. 4.1

A gene determines whether fruit flies have normal wings or vestigial wings.

There are two alleles for this gene:

4

- A is dominant and represents the allele for normal wings
- a is recessive and represents the allele for vestigial wings.

(i)	A homozygous dominan	t fruit fly was	crossed with	a hete	rozygous fruit fly.	
	Complete the genetic di wings.	agram to pre	dict the prob	ability (of the offspring having ves	tigia
	parental phenotypes	normal	wings	×	normal wings	
	parental genotypes			×		
	gametes		,	× (, (
	offspring genotypes					
	offspring phenotypes					
	probability of offspring h	aving vestigia	al wings			[5]
(ii)	State the genotype of a	pure-breedin	g fruit fly that	has no	rmal wings.	
(iii)	The binomial name for a				ter.	[1]
	State the genus of this f	ruit fly.				
						[1]

[Total: 10]

5 (a) Fig. 5.1 shows a section through a human molar tooth.

Fig. 5.1

(i)	Use label lines and lab	els to identify the	ese structures on	Fig. 5.1:

- cement
- gum
- nerves. [3]

(ii)	State the function of the canine teeth in humans.	
		[1

(b) Sheep are herbivores. They do not have canine teeth, or teeth in the front upper jaw.

The other types of teeth in sheep are similar to humans.

Fig. 5.2 shows an x-ray of the teeth in the skull of a sheep.

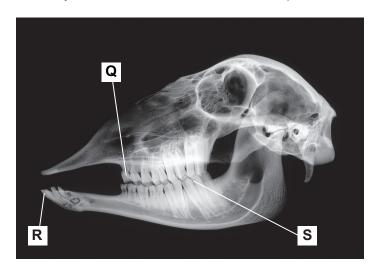


Fig. 5.2

The boxes on the left show a letter from Fig. 5.2.

The boxes in the middle show the name of a type of tooth shown in Fig. 5.2.

The boxes on the right show the function of each type of tooth.

Draw **one** line to link each letter from Fig. 5.2 to its correct name.

Draw one line to link each name to its correct function.

Draw a total of six lines.

letter from Fig. 5.2	name	function
Q	incisor	
		biting off pieces of food
R	molar	
		grinding food
S	premolar	
		[5]
(c) State the type	e of digestion that breaks up large pieces	of food.
		[1]

(d) Fig. 5.3 is a diagram showing the stages of dental decay.

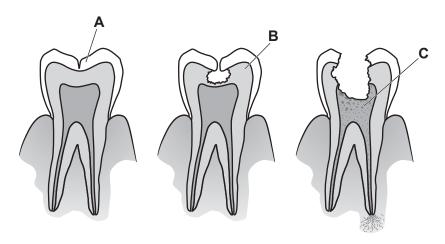


Fig. 5.3

(i)	Describe the causes of dental decay.
	Use the letters in Fig. 5.3 in your answer.
	[4]
(ii)	Describe one way of preventing dental decay.
	[1]

[Total: 15]

6 (a) The activity of the heart can be monitored by measuring the pulse rate.

Two students measured their pulse rates before, during and after exercise.

The results are shown in Fig. 6.1.

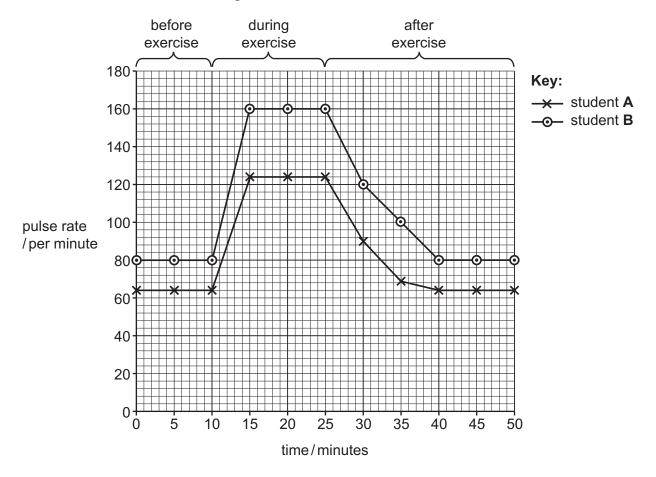


Fig. 6.1

Describe the changes in the pulse rates shown in Fig. 6.1 for student A and student B .
[4]

© UCLES 2021 0610/32/M/J/21

(i)

	(ii)	Calculate the percentage change in the pulse rate between 0 and 15 minutes for student ${\bf A}$.
		Give your answer to the nearest whole number.
		Space for working.
	(iii)	State two other methods that can be used to monitor the activity of the heart.
		1
		2[2]
(b)	Exe	rcise levels, environmental temperature and changes in water intake can affect the
()		ime and concentration of urine produced.
	Con	nplete the sentences by circling the correct words in bold.
	The	first sentence has been done for you.
	Mor	re exercise causes the volume of urine to increase / decrease / stay the same and the
	con	centration of urine to increase / decrease / stay the same.
	A gr	reater intake of water causes the volume of urine to increase / decrease / stay the same
	and	the concentration of urine to increase / decrease / stay the same.
	A h	igher environmental temperature causes the volume of urine to increase / decrease
	/ sta	ay the same and the concentration of urine to increase / decrease / stay the same. [2]
		[Total: 11]

7	Measles is an	example of a	transmissible	disease that is	caused by	/ a virus

(a) Complete the definition of transmissible disea
--

[2]

(b) Fig. 7.1 is a pie chart showing the number of people infected with four different transmissible diseases in one country in 2018.

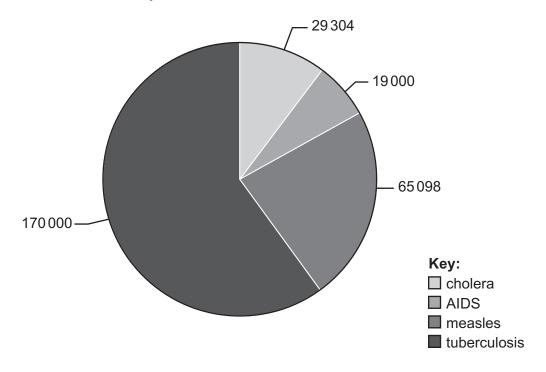


Fig. 7.1

(i)	State the name of the disease with the smallest number of infections in Fig. 7.1.	
		[1]

(ii) Use the information in Fig. 7.1 to calculate the total number of people infected with these four diseases.

		 people infected [1]
(iii)	State the type of organism that causes cholera	

I,

(c) (i) The list shows some examples of ways that disease-causing organisms can be transmitted.

air animals blood

contaminated surfaces food

Complete Table 7.1 to show which are examples of direct contact and which are examples of indirect contact.

Each example can be used once, more than once or not at all.

Table 7.1

direct contact	indirect contact	

[2]

(ii) Table 7.2 shows **three** ways the body can defend itself and some examples of the three methods.

Place ticks $(\ensuremath{\checkmark})$ in the boxes to show the correct type of defence mechanism for each example.

Table 7.2

example of defence mechanism	cells	chemical	mechanical
antibody production			
hairs in the nose			
mucus			
phagocytosis			
skin			
stomach acid			

[3]

[Total: 10]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.