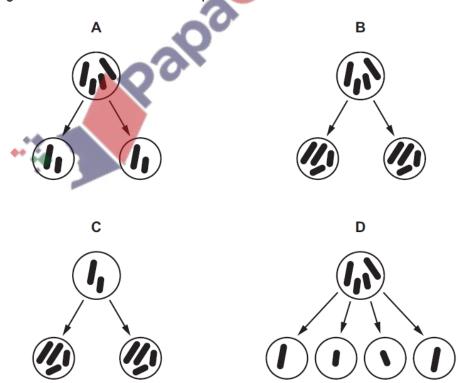
<u>Inheritance – 2021 IGCSE 0610</u>

1. March/2021/Paper_12/No.32

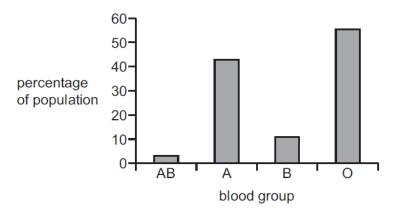
What is defined as 'a thread-like structure of DNA, carrying genetic information in the form of genes'?

- A allele
- B chromosome
- **C** protein
- **D** zygote


2. June/2021/Paper_11/No.33

What is the transmission of genetic information from generation to generation called?

- A fertilisation
- **B** inheritance
- C meiosis
- **D** reproduction

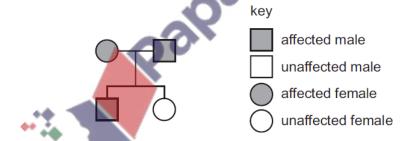

3. June/2021/Paper_11/No.34

Which diagram shows the results of the process of mitosis?

4. June/2021/Paper_11/No.35

The graph shows the distribution of blood groups in one area.

This is an example of discontinuous variation.


Which statement about discontinuous variation is correct?

- A There is a range of genotypes between two extremes.
- **B** There is a range of phenotypes between two extremes.
- **C** There are intermediates between the phenotypes.
- **D** There are no intermediates between the phenotypes.

5. June/2021/Paper 12/No.34

Both parents in a family have a characteristic caused by the dominant allele of a gene. They have two children.

The pedigree diagram of the family is shown.

Which row describes the genotypes of the parents in relation to this gene?

	female parent	male parent	
Α	heterozygous	heterozygous	
В	heterozygous	homozygous	
С	homozygous	heterozygous	
D	homozygous	homozygous	

6. June/2021/Paper_13/No.33

By which process is genetic information transmitted from generation to generation?

- A inheritance
- **B** mitosis
- C meiosis
- D variation

7. June/2021/Paper_13/No.34

Some reptiles can lose and regrow their tails to avoid predation.

Which process occurs to regrow the tail?

- A digestion
- **B** fertilisation
- C meiosis
- **D** mitosis

8. June/2021/Paper_21/No.32

What carries a copy of the gene to the cytoplasm to make a protein?

iidde

- A alleles
- **B** DNA molecules
- **C** ribosomes
- D mRNA molecules

9. June/2021/Paper_21/No.33

Which statement about meiosis is correct?

- A Daughter cells are genetically identical.
- B The chromosome number changes from haploid to diploid.
- C It is used to produce body cells.
- **D** It allows the formation of new combinations of chromosomes.

10. June/2021/Paper_21/No.34

Colour blindness is a characteristic that is sex-linked.

Which statement about colour blindness is correct?

- A The gene for colour blindness is located on the Y chromosome and colour blindness is more common in males than in females.
- **B** The gene for colour blindness is located on the X chromosome and colour blindness is more common in males than in females.
- C The gene for colour blindness is located on the X chromosome and colour blindness is more common in females than in males.
- **D** The gene for colour blindness is located on the Y chromosome and colour blindness is more common in females than in males.

11. June/2021/Paper_22/No.32

The Tasmanian devil is an animal with seven pairs of chromosomes in each body cell.

The diagram shows the chromosomes in a cell from a Tasmanian devil.

Which statement is correct?

- A The cell is a haploid cell containing pairs of chromosomes.
- B The cell is a diploid cell with no pairs of chromosomes.
- **C** The cell is a haploid cell with no pairs of chromosomes.
- **D** The cell is a diploid cell containing pairs of chromosomes.

12. June/2021/Paper_22/No.33

Some statements about mitosis are listed.

- 1 Cells divide and produce new cells to repair damaged tissues.
- 2 Chromosomes are duplicated and the cell separates to form gametes.
- 3 Chromosomes are duplicated and the cell separates to form genetically identical cells.
- 4 Mitosis is used in asexual reproduction.

Which statements are correct?

- **A** 1, 2 and 3
- **B** 1, 3 and 4
- **C** 2 and 4
- **D** 3 and 4 only

13. June/2021/Paper_23/No.33

Which definition of mitosis is correct?

- A nuclear division giving rise to genetically different cells
- B nuclear division giving rise to genetically identical cells
- C fusion of nuclei giving rise to a genetically different cell
- D fusion of nuclei giving rise to a genetically identical cell

14. June/2021/Paper 23/No.34

What happens during meiosis?

- A haploid cell produces haploid cells that are genetically identical.
- **B** A haploid cell produces haploid cells that are genetically different.
- C A diploid cell produces haploid cells that are genetically identical.
- D A diploid cell produces haploid cells that are genetically different.

15. June2021/Paper_31/No.6

(a) Dimples are an indentation of the cheek visible when smiling.

Fig. 6.1 is a photograph showing a person with dimples.

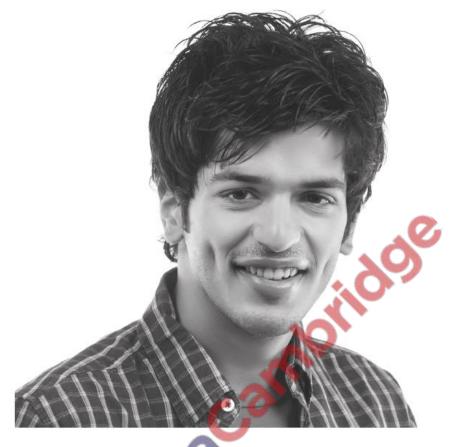


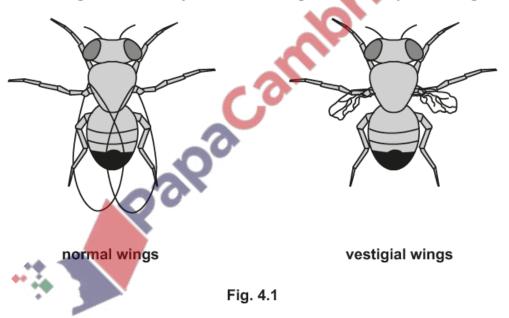
Fig. 6.1

The number of male and female students in a class that had dimples was recorded.

The results are shown in Table 6.1.

Table 6.1

characteristic	sex	number of students
ide d'assilia	male	4
with dimples	female	5
without	male	13
dimples	female	12


(i) Calculate the total number of male students in the class.

......[1]

(ii)	C	alculate the	differen	ce in number	betwee	en male	and female	students with dimple	es.
									[1]
	(iii)	Describe the variation.	e evidenc	e from Table 6	.1 that sl	nows tha	at dimples are	e a type of discontinuous	S
						•••••			
						•••••			
								[2]
	(iv)	State one of	ther exar	nple of discon	tinuous	variatior	n in humans.	O	
								[1]
	(v)	State one ex	xample o	f continuous v	ariation i	in huma	ns.		
							<u></u>	[1]
(b)				y a mutation.		9			
	Con	nplete the ser	ntences a	about mutation	using w	ords fro	m the list.		
	Eac	h word can b	e used o	nce, more thai	n once o	r not at	all.		
		alleles		decrease	g	enetic	imp	ulses	
	incr	ease	ionisir	ng m	aintain		physical	stimuli	
	A m	utation is a			ch	ange.			
	Mut	ations form n	ew	/					
	Son	ne chemicals	and			radi	ation can		
				the rate o	f mutatio	on.		IA	1
								[4	
								[Total: 10	1

(b) Fig. 4.1 is a diagram of a fruit fly with normal wings and a fruit fly with vestigial wings.

A gene determines whether fruit flies have normal wings or vestigial wings.

There are two alleles for this gene:

- A is dominant and represents the allele for normal wings
- a is recessive and represents the allele for vestigial wings.

	parental phenotypes	normal wings	×	normal wings	
	parental genotypes		×		
	gametes	, (× (, (
	offspring genotypes	Calif	O	dos	
	offspring phenotypes	3960			
	probability of offspring l	having vestigial wings			
(ii)	State the genotype of a	a pure-breeding fruit fly that	t has n		[5]
					[1]
(iii)	The binomial name for	a fruit fly is <i>Drosophila mei</i>	lanoga	ster.	
	State the genus of this	fruit fly.			
					[1]
				[Total: 1	10]

(i) A homozygous dominant fruit fly was crossed with a heterozygous fruit fly.

wings.

Complete the genetic diagram to predict the probability of the offspring having vestigial

17. June2021/Paper_33/No.10

(a) Fig. 10.1 shows the results of crossing a plant with red flowers with a plant with white flowers.

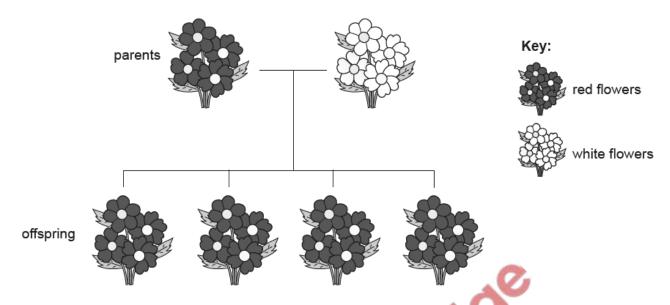


Fig. 10.1

Both of the parent plants were homozygous for flower colour.

All of their offspring had red flowers.

Co	
[1	1

- (ii) The gene controlling flower colour in this plant species has two alleles:
 - R is dominant and represents the allele for red flowers
 - r is recessive and represents the allele for white flowers.

allele for flower colou		e fact that K is the	dominant
			[4]

(b) Another plant with red flowers was crossed with a plant with white flowers.

Some of the offspring plants from this cross had red flowers and some of the offspring plants had white flowers.

Complete the genetic diagram to show the results of this cross.

	red-flowered plant	X	white-flo pla	
parental genotypes		Χ		
parental gametes				
			de	
		or,		
offspring genotypes	Co			
offspring phenotypes	0			
A00	94			[5]
•**				[Total: 7]

18. June2021/Paper_41/No.5

Fig. 5.1 shows some of the stages in the reproduction of the bacterium *Escherichia coli*.

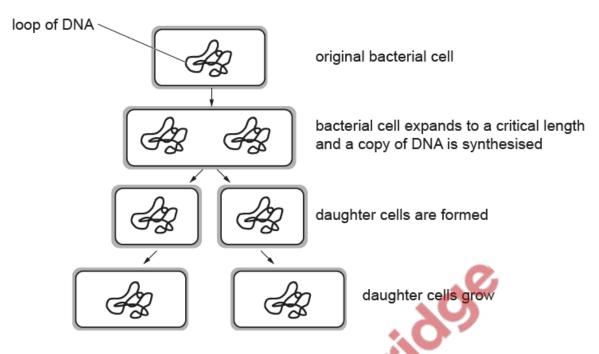
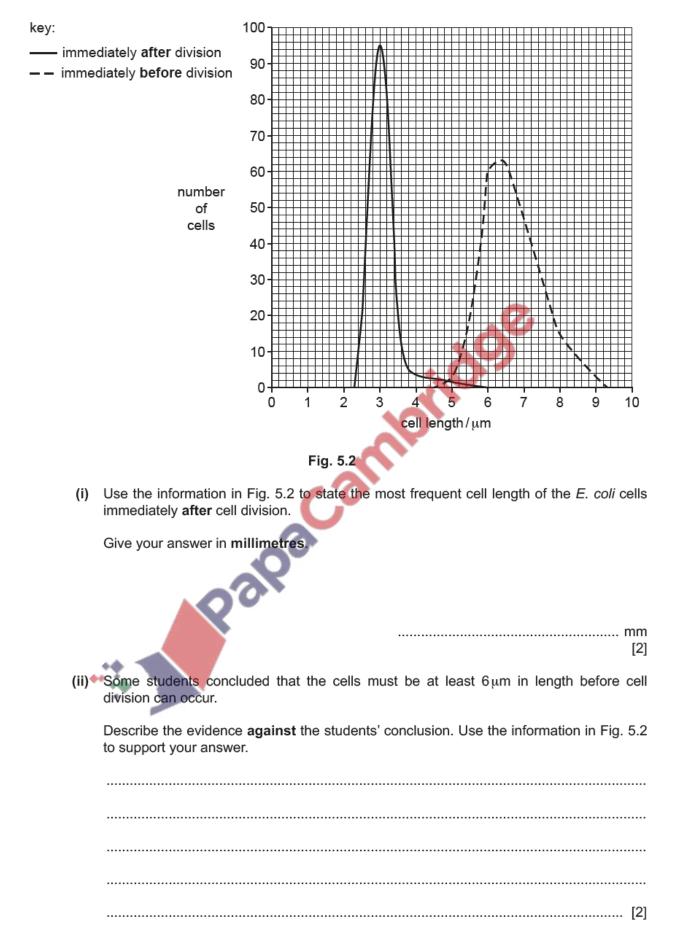


Fig. 5.1

(a) Complete the sentences about the cells in Fig. 5.1

[3]


(b) Students used a microscope and time-lapse photography to observe E. coli cells reproducing.

They used the series of photographs to identify which cells were dividing.

They measured the lengths of the dividing cells and put their data into two groups:

- cell lengths immediately before cell division
- · cell lengths immediately after cell division.

Fig. 5.2 shows their results.

(i)	Describe how a plasmid is cut so that a new gene can be inserted into the plasmid.
	[2]
(ii)	List two reasons, other than the presence of plasmids, that make bacteria and single-celled fungi useful to biotechnology industries.
	1
	2
	[2] [Total: 11]
	[2] [Total: 11] Palpa Carribritate

The	gene that determines b	blood group has three a	alleles: I ^A , I ^B and I ^o .		
(a)	Parents with the genotypes IAIo and IBIo are planning to have more children.				
	Complete the genetic diagram to determine the probability that the next child will have blog group O.				
	parental blood groups	Α	В		
	parental genotypes	I _A I _o	l ^B l ^o		
	Punnett square				
			40	2	
			Wille		
		63			
	phenotypes of the children	00			
	probability that the chil	d will have blood group	0		
				[4	
(b)	Explain why the ABO b		an example of co-dor		
				[2	

There are four blood groups in the ABO system in humans: A, B, AB and O.

19. June2021/Paper_43/No.6

(c) Fig. 6.1 shows the percentages of the global population with the four different blood groups in the ABO system.



Fig. 6.1

With reference to Fig. 6.1, explain why the ABO blood group system is an example of
discontinuous variation.

101
[2]
[Total: 8]