MARK SCHEME for the May/June 2014 series

0438 BIOLOGY (US)

0438/31

Paper 31 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Γ	Page 2	Mark Scheme	Syllabus	Paper
		IGCSE – May/June 2014	0438	31

	Answer			Marks	Guidance for Examiners
1 (a)		1			
	pollutant	source	effect on the environment		
	heavy metals, e.g. lead and mercury	factories/industries/mining/ exhaust from transport/chemical plants/sewage (sludge);			
	phosphate	fertiliser/detergents/ sewage ;			
	sulfur dioxide	(combustion of) coal/oil/factories/power stations/chemical plants/exhaust from transport ;			
	ionising radiation	nuclear fall-out/radioactive waste/nuclear industries/nuclear power plants/uranium/plutonium/ X-rays ;	mutations/cancers ; A changes genes/changes DNA	[5]	

			Page 3		Scheme	Sylla		Paper	
				IGCSE – Ma	ay/June 2014	043	38	31	
(b)	1 2 3 4 5 6 7 8 9	light bl reduce (so) alg less/n algae/ bacteri (aerob low lev	ia, multiply/increas ic) respiration ; /els of oxygen cau	esis ; plants, die ; d by plants ; cayed/decomposed, by b	igration, of, (named)	max [5]			
(c)	1 2 3	add lime(stone)/calcium carbonate/CaCO ₃ /alkali, to, lakes/rivers/ soils ; use less fossil fuels ; ignore stop using fossil fuels use low sulfur fuels : A stop using sulfur fuels							
	3 4 5	desulfu flue ga	use low sulfur fuels ; A stop using sulfur fuels desulfurisation of, coal/oil ; lue gas desulfurisation/'use (wet) scrubbers'/neutralise waste gases with lime ;						
	6	catalyt	ic converters/use	electric cars;					
	7	idea of	f international treat	ty for reducing emissions	;	max [2]			
2 (a)	full r	narks m	ay be possible fror	m a fully annotated genet	tic diagram				
	fema	ales are	XX, males are XY	;					
	fema	ale game	etes are X, male ga	ametes are X or Y ;					
	ref to	o randon	n fusion of gamete	es/shown in a Punnett sq	uare or alternative ;				
	1:1/	50:50/d	lescribed, shown/s	stated ;		[4]			

		Page 4	Mark Scheme	Sylla	bus	Paper	7
			IGCSE – May/June 2014	043	38	31]
(b)	semen/sper	m, inserted/injecte	n with X (chromosome) ; ed, into, uterus/oviduct ;				
	at/around tir	me of, ovulation/A	W ;	max [2]			
(c)	 2 any nu 3 idea th compa 4 formula 5 formula anaem 6 formula bone / 1 7 formula in dim 	trient with similar of at human milk me prisons with cow's a a supplies less pro- a supplies more ironia; a supplies more vi for strong bones/p a supplies more vi light/prevention o	loser in composition, to human milk ; quantities in formula and human milk ; ets requirements of human babies ; milk otein which is harder to digest ; on, for haemoglobin formation/to prevent tamin D for, absorption of calcium/formation of prevention of rickets ; tamin A, for immune system/retina/rods/vision f night blindness ; es with correct units ;	max [4]			
(d)	•	ade by cells; eds up the rate of tein;	a reaction ;	max [2]			

		F	Page 5	Mark Scheme IGCSE – May/June 2014		abus 38	Paper 31	
							<u> </u>	
(e)		tubes 1	and 3 – the effec	st of pH				
	1	lysozym	e is active in, 1/p	H 4.0/acid;				
	2	<u>cell wall</u>	<u>s,</u> broken down/d	igested/destroyed in tube 1;				
	3	no (bact	terial) growth in tu	pe 1;				
		tubes 1	and 4 – the effec	t of type of bacteria				
	4 5 6 7	lysozym ref to sp ignore l idea tha tubes 1	e does not, destro becificity to bacteria bacteria are immu <i>t</i> nothing in (cell w and 2 – the effec	rall of) bacteria B for lysozyme to digest ; et of boiling				
	8 9 10	lysozym idea tha	e denatured (by b e not, active ; <i>t</i> tube 2 is a contro n tube 1 ;	oiling) ; ol to show that lysozyme is responsible for no	max [6]			
(f)	1 2 3 4	defends ref to dis	assive) <u>immunity</u> against, infection seases that the mo function of antibo	/illness/disease/pathogens/AW; other has had;	max [2]			

		Page 6	Mark Scheme IGCSE – May/June 2014	Sylla 043	Paper 31	
3 (a) (i)	eaten/absorbed, a (sugary/high carbohydrate) meal/AW ; (secretion/effect, of) adrenaline ; (secretion/effect, of) <u>glucagon</u> ; dehydration/loss of water ;			max [1]		
(ii)	hungry/fasti	<u>iration</u> ; ercise/physical activ ng/starvation; ffect, of) insulin;	ity;	max [1]		
(iii)	liver ; muscle ; kidney ; testes ;			max [2]		
(b)	 pancreas/islets of Langerhans, detects increase in glucose concentrati (pancreas/islets) secretes/produces, insulin; transported in, blood/plasma; liver/muscle/cells, convert glucose to glycogen; ref to, enzymes (converting glucose to glycogen); homeostasis/negative feedback; 			n max [3]		
(c)	through, partially p by osmosis ; down water potent		, .	max [3]		

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0438	31

4	(a)	(chemical) reactions that breakdown, (named) nutrient(s);		
		to, release / transfer, energy ; inside cells ;	max [2]	R produces / creates / AW, energy
	(b)	biceps contracts ; pulls on forearm / radius ; ref to the tendon ; bends / flexes, the arm ; triceps relaxes ;	max [3]	
	(c) (i)	increase in muscle contraction ; increase in demand for, energy / ATP ; increase in rate of respiration ; <u>aerobic</u> respiration ; heart beats faster / breathes faster <i>or</i> breathes deeper ;	max [4]	For MP1, 2 and 3 'more'/increase must be given at least once
	(ii)	line decreases immediately at 20 min ; line reaches 0.2 $dm^3 min^{-1}$ at 30 min ;	[2]	
	 (iii) 1 <u>oxygen debt</u>; (during exercise) oxygen not supplied fast enough (from lung/ to muscles; anaerobic respiration occurred during exercise; lactic acid produced; builds up in muscle/not carried away fast enough in blood; extra oxygen required after exercise; lactic acid is, broken down/respired/oxidised/converted to gl 		max [4]	

[Page 8	Mark Scheme	Syllabus	Paper
		IGCSE – May/June 2014	0438	31

5	(a)	(i)	Caenorhabditis ;	[1]	
		(ii)	thread-like bodies/filamentous/filament-like ; unsegmented body ; hydrostatic skeleton ; body, tapers/is pointed, at, one/both, ends ; through gut/mouth and anus ; relatively large pharynx/sucking mouthparts ;	max [2]	
	(b)		prevents accumulation of dead matter/removes (organic) waste ; recycles nutrients/named nutrient(s) ; releases (carbon as) carbon dioxide ; (carbon dioxide) for photosynthesis ; decreases particle size of food for decomposers ; ref to energy flow in, food chain/food web/ecosystem ;	max [3]	R energy cycling/recycling
	(c)	(i)	gametes from same individual ; self-fertilisation / described ; only new source of variation is mutation ; variation produced by meiosis ;	max [2]	
		(ii)	6;	[1]	

		Page 9	Mark Schem IGCSE – May/Jun		Sylla 043		Paper 31	
(iii)	P meiosis							
	reduction div	ision/chromosom	e number is halved ;					
		bling of chromoso e together/at fertil	me number, with each generati isation ;	ion/when		produci	ing haploid gar	netes = 2
		(cells/gametes/ cell, production						
	Q mitosis							
	growth is taki producing (ge more diploid	enetically) identica	al cells ;		max [3]			
(d)	in chromosor in the nucleu in mitochond	s;			max [2]	A in pla	asmids;	

Page	e 10	Mark Scheme	Syllabus	Paper
		IGCSE – May/June 2014	0438	31

6	(a)	1.8/1.83/1.825, mm ;	[1]	
	(b)	nitrogen fixation ; convert nitrogen into, ammonia/NH ₃ /ammonium ions/NH ₄ ⁺ ; convert ammonia to amino acids ;	max [2]	
	(c) (i)	photosynthesis ; carbon dioxide + water/CO ₂ + H ₂ O ; use of, <u>light</u> (energy)/ <u>sunlight</u> ;	max [2]	
	(ii)	translocation/mass flow ; phloem ; as sucrose ; from, source/leaf ; then from phloem to root nodule by diffusion ;	max [2]	
	(d)	active, transport/uptake ; use of, energy/ATP (from respiration) ; use of, proteins/carrier molecules, in membrane ;	max [2]	