MARK SCHEME for the May/June 2014 series

0438 BIOLOGY (US)

0438/33
Paper 33 (Extended), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0438	33

	Answer		Marks	Guidance for Examiners
1 (a)	DNA / genome is the same / similar ; genes are same; AVP ; e.g. ref to DNA bases / sequence, same / similar		[max 2]	
(b) (i)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 7 \\ & 8 \end{aligned}$	mitosis; no fertilisation ; budding off (of spores) / fragmentation ; vertical hyphae ; production of spores ; sporangium bursts / opens / releases ; ref to number of nuclei per spore; method of spore dispersal i.e. air / water / wind ; AVP ; e.g. DNA replication	[max 3]	
(ii)	(named) favourable characteristics of parent passed on ; dense colonies outcompete other species ; rapid ; less, energy / resources used ; no gametes; idea of only one parent required ;		[max 3]	
			[Total: 8]	

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0438	33

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0438	33

4 (a) (i)	pollen / male gamete ;	[1]	\mathbf{R} gamete unqualified
(ii)	chromosome number halved / becomes haploid; genetic / DNA variation ; new combinations of alleles; fertilisation restores diploid number in zygote / ensures number of chromosome remains constant in next generation ;	[max 2]	
(b) (i)	pollen from anther to stigma; between different plants of same species;	[2]	
(ii)	large petals ; pattern / guide lines on petals ;	[max 1]	
(c) (i)	temperature / warmth ; light ; water availability ; wind ; pollinator life-cycle timings ; CO_{2} concentration ; pressure ;	[max 1]	
(ii)	influence by genes and environment; range of phenotypes / flowering times results ; (flowering time) is measurable ;	[max 2]	

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	$\mathbf{0 4 3 8}$	33

(d)	1 2 3 4 5 6 7 8 9 10	different environments have different selection / competition pressures ; variation occurs (at fertilization / meiosis) ; ref to mutation ; best adapted organisms most likely to survive ; (those that survive) pass on their alleles / genes ; competition for survival ; cross pollination ensures more variation (than selfpollination) ; reproductive isolation (by different flowering times) ; changes enhanced over generations ; no cross-pollination between low and high altitude plants;	[max 5]	A Survive and reproduce Idea of best adapted
			[Total:14]	
5 (a)	E-cortex ; F - medulla ; G - ureter ;		[3]	
(b)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	(ultra)filtration ; high blood pressure assists filtrate to pass through glomerulus / capsule ; proteins / blood cells, too big to move out of capsule / glomerulus; filtrate / named example, small enough to move through ; filtrate consists of water and dissolved salts / ions / named ion / glucose / urea ; ref to capillaries ;	[max 3]	
(c)	movement of (ions / large molecules) through the cell membrane ; (ions/large molecules) against a concentration gradient ; using energy (from respiration); use of protein / carrier in membranes ;		[max 2]	\mathbf{R} along the concentration gradient
(d)	water ; salt(s) / ions / minerals / named ion ;		[max 1]	

Page 7 Mark Scheme	Syllabus	Paper	
	IGCSE - May/June 2014	0438	33

Page 8 Mark Scheme	Syllabus	Paper	
	IGCSE - May/June 2014	0438	33

6 (a)				
		part of cycle	carbon compound found in each part	
	P	atmosphere / air	carbon dioxide/ $\mathrm{CO}_{2} ; \mathbf{R}$ carbon monoxide	
	Q	(named) plant(s) / flora / producers	glucose $/ \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} /$ starch / cellulose / any organic compound found in plants; \mathbf{R} glycogen	
	R	(named) animal(s)/ fauna/ consumers	glucose/maltose/glycogen/fats/fatty acid/glycerol/amino acid/protein/nucleic acid; \mathbf{R} starch	
	S	(named) decomposer(s) / saprophytes	glucose/glycogen/fats/fatty acid/glycerol/amino acid/protein/nucleic acid ;	
	T	fossil fuels, e.g natural gas	Methane	
	[max 4]			
(b)	$\begin{array}{\|l} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array}$	CO_{2} enters leaf; CO_{2} diffuses to (cells) ; carbon dioxide and water / $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$; chlorophyll / chloroplasts, traps light energy ; light energy is used to make glucose / carbohydrates ; oxygen is present ;$6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} ;$		[max 5]

Page 9 Mark Scheme	Syllabus	Paper	
	IGCSE - May/June 2014	0438	33

(c)	$\mathbf{1}$	factor:- light intensity or duration / carbon dioxide concentration / temperature ; effect of factor:- less photosynthesis, due to low light / low CO2 / non optimum temperature; explanation:- light provides energy $/ \mathrm{CO}_{2}$ substrate for photosynthesis/temperature effects enzyme activity ; ref to limiting (factor) ;	[max 3]	
(d)	carbon dioxide (enrichment) - burning / CO_{2} gas cylinder ; light (intensity) - supplemental / artificial lighting / shading ; temperature - heating / cooling / ventilation / spray water ; water - irrigation / watering / hydroponics described ; pests / disease - (named) pesticides / biological control of pests ; minerals (named) - hydroponis / added to water supply / soil ; humidity - limiting ventilation / watering / humidifier or de- humidifier ; pollination -adding insect (named) pollinators ;	Mark is for the mechanisms of control in each case		
	[max 3]	[Total: 15]		

