

International General Certificate of Secondary Education
CAMBRIDGE INTERNATIONAL EXAMINATIONS
CHEMISTRY 0620/2
PAPER 2

OCTOBER/NOVEMBER SESSION 2002

1 hour

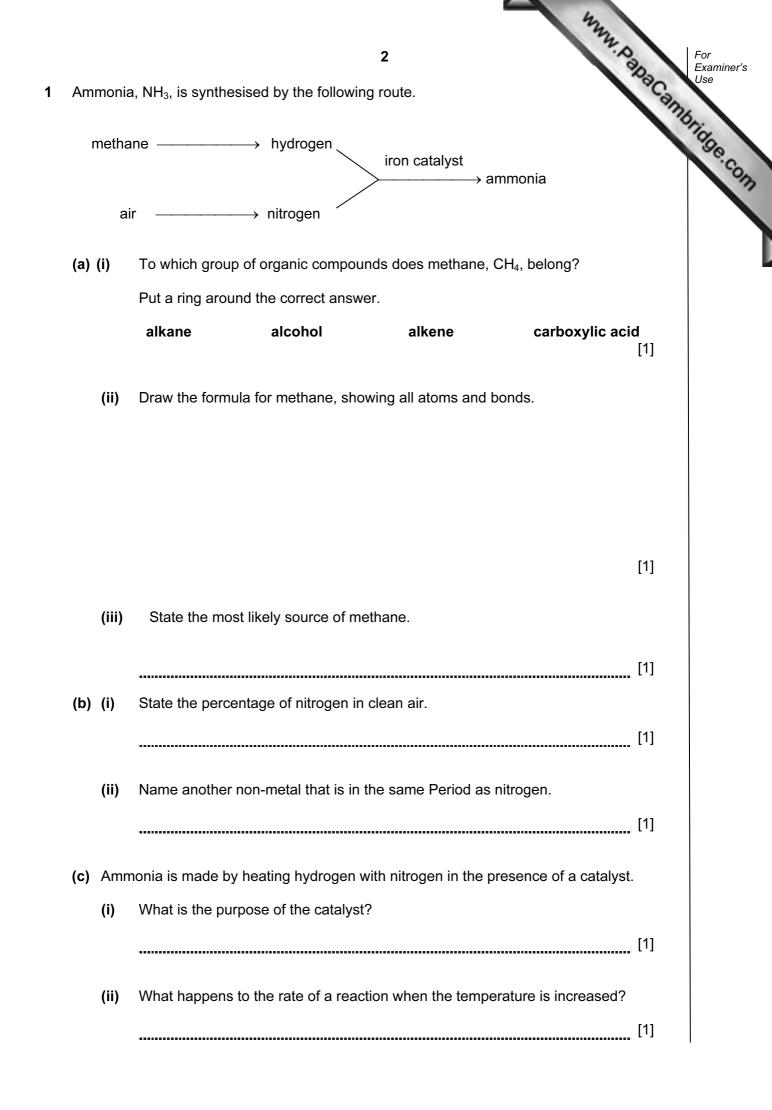
Candidates answer on the question paper. No additional materials are required.

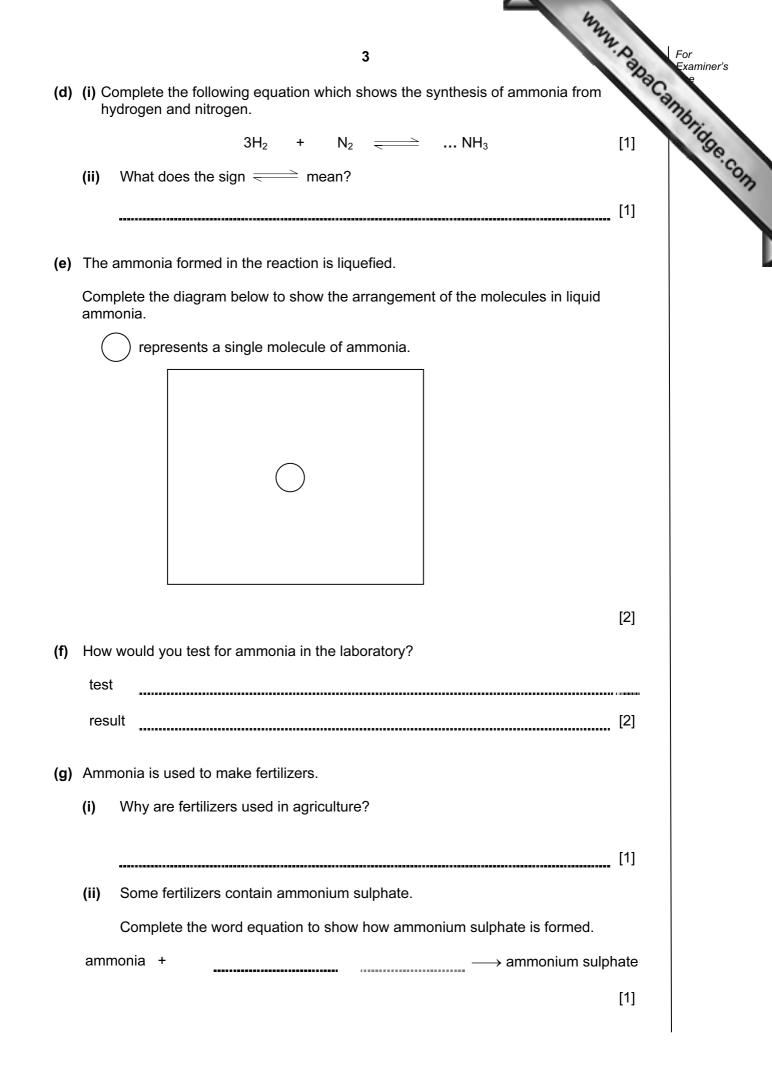
Time 1 hour

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided on the question paper.


INFORMATION FOR CANDIDATES


The number of marks is given in brackets [] at the end of each question or part question.

You may use a calculator.

A copy of the Periodic Table is printed on page 16.

FOR EXAMI	NER'S USE
1	
2	
3	
4	
5	
6	
TOTAL	

2 When rain water trickles through rocks, it dissolves some of the minerals present.

This water, which is bottled for drinking, is called mineral water.

The table shows the ions present in a litre of mineral water.

	4	me of the minerals present. eral water. vater. mass of ion present in one litre	Fo
en rain water trickles throu	ugh rocks, it dissolves so	me of the minerals present.	a Can Us
s water, which is bottled fo	or drinking, is called mine	eral water.	76rio
table shows the ions pre	sent in a litre of mineral v	vater.	
name of ion	formula of ion	mass of ion present in one litre of water/milligrams	
calcium	Ca ²⁺	10	
chloride	Cl⁻	8	
hydrogencarbonate	HCO ⁻ 3	64	
sodium	Na⁺	8	
sulphate	SO4 ²⁻	7	

(a) What do you understand by the term ion?

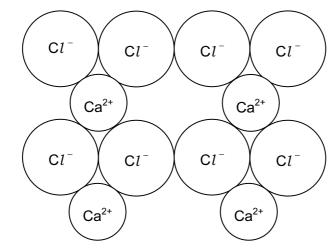
......[1]

(b) Which positive ion has the greatest concentration in this sample of water?

......[1]

(c) Complete the following equation to show how a calcium ion is formed from a calcium atom.

> Ca²⁺ Ca + ... e⁻


> > [1]

(d) When this sample of mineral water is evaporated to dryness, various compounds are formed. One of these compounds is calcium chloride.

Suggest the name of two other compounds which could be formed.

compound 1 [2] compound 2

(e) Part of the structure of calcium chloride is shown below.

Use this diagram to work out the simplest formula for calcium chloride.

formula

[1]

www.papacambridge.com

(f) Complete the following table to show the electrical conductivity of calcium and calcium chloride in the solid and liquid states.

Put a \checkmark if the substance conducts.

Put a X if the substance does not conduct.

substance	state	electrical conductivity
calcium	solid	
calcium	liquid	
calcium chloride	solid	
calcium chloride	liquid	

[2]

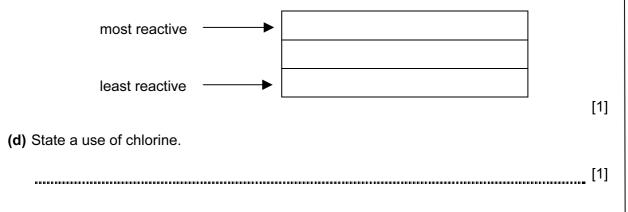
(g) A sample of water was contaminated with clay, which is insoluble in water.

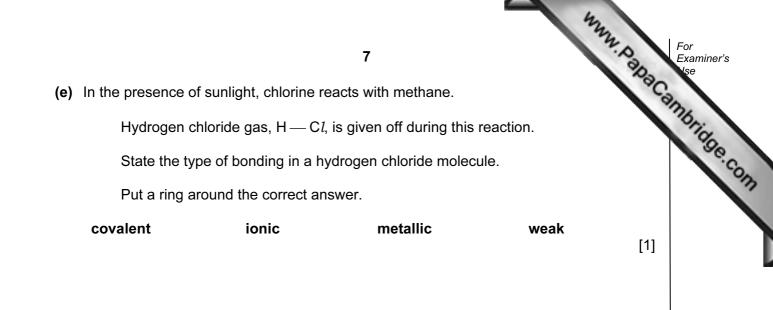
Explain with the help of a labelled diagram, how you would separate the clay from the water.

- 3 Fluorine, chlorine, bromine and iodine are halogens.
 - (a) Complete the table by filling in the blank spaces.

				12	
		6			N.D.
rine, chlorine, br	romine and iod	ine are halogen	S.		~aCar
Complete the tak	ble by filling in t	he blank spaces	S.		M. PapaCarri
halogen	colour	melting point	boiling point	state at room	ן י
		/°C	/°C	temperature	-
fluorine	yellow	-220	-188		
chlorine		-101	-35	gas	
bromine	reddish- brown	-7	+59		
iodine		+114		solid	

- (b) Predict the boiling point of iodine.
- (c) When chlorine is bubbled through a solution of potassium bromide, the solution turns orange - red.

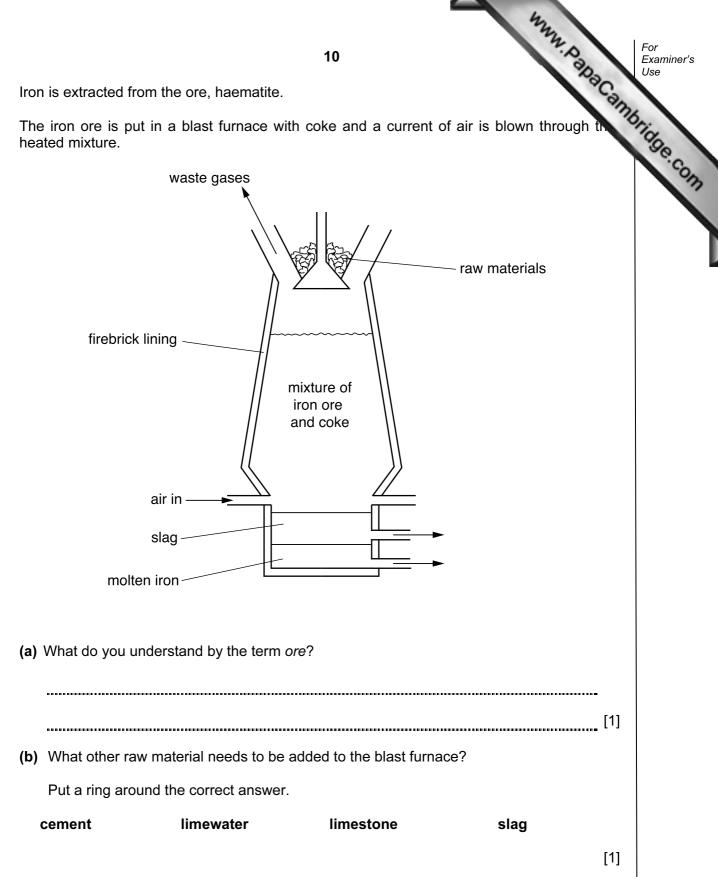

When iodine is mixed with potassium bromide, no colour change occurs.

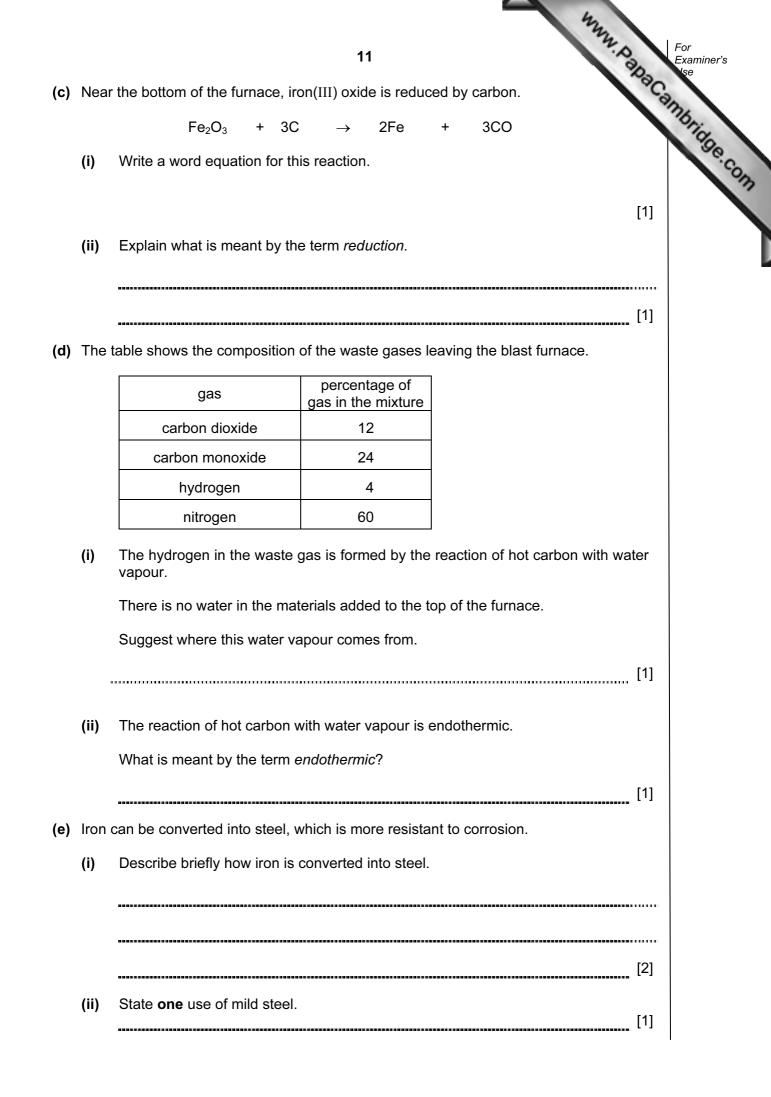

- (i) Write a word equation for the reaction between chlorine and potassium bromide.
 - [2]

[4]

[1]

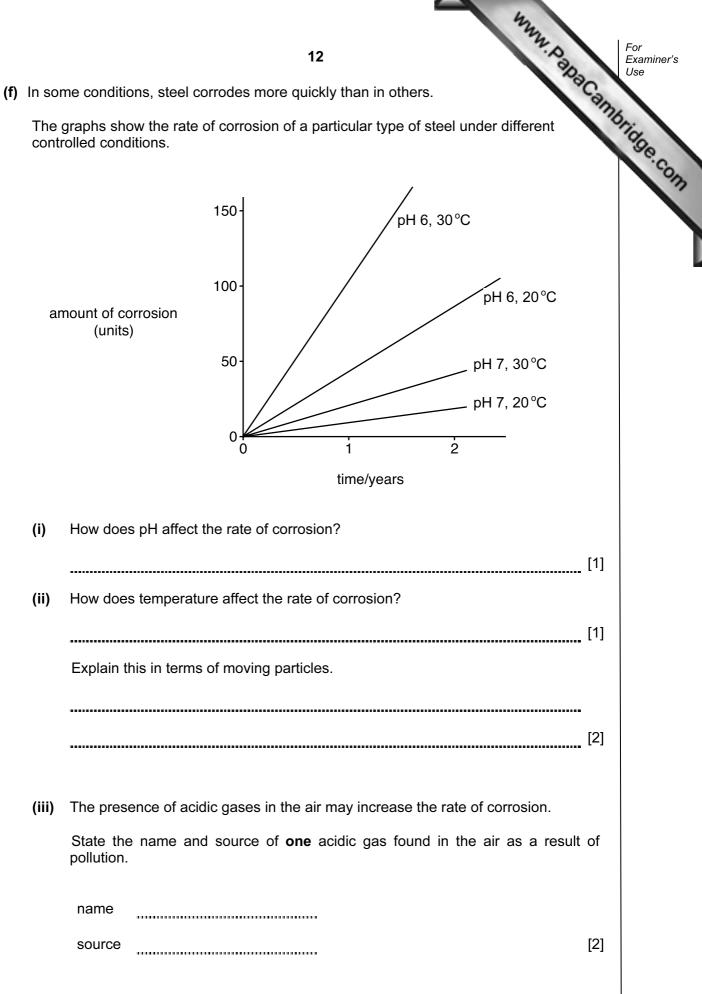
(ii) Put the elements bromine, chlorine and iodine in order of reactivity.




					422	2
				8		.D.
Son	ne or	ganic compound	s found in ripe fruits	are shown below.		aCan
	н	H				
)		CH ₃ CO ₂ H	CH3	CH ₂ CH ₂ CO ₂ H	W. Papacan:
	н⁄	_н А	В		с	
		CH₃CH₂C	ЭН	CH₃CH₂CHO		
		D		E		
(a)	Wha	at do you underst	and by the term <i>org</i>	ganic compound?		
						[1]
	cor	npound	npounds belong to an compounds is an un	nd compound	bon?	[1]
(d)	Whi	ch one of these o	compounds is an alo	cohol?		
						[1]
(e)		ch one of these of petroleum?	compounds can be	formed directly by	cracking the paraff	in fraction
						[1]
(f)	Con	npound D burns r	eadily.			
	(i)	Burning is an e	xothermic reaction.			
		Explain the me	aning of the term e	xothermic.		
						[1]
	(ii)	State the produ	ucts formed when D	burns in excess ai	r.	
						[2]

	9 (iii) Name the carbon compound formed when D undergoes incomposed [1]	For Examiner's Ise
(g)	Write down the molecular formula of compound C . [1]	S.COM
(h)	Calculate the relative molecular mass of compound C . [1]	
(i)	Many fruits contain a variety of different coloured compounds.	
	What separation technique can you use to separate these different coloured compounds?	
	[1]	

Iron is extracted from the ore, haematite. 5


The iron ore is put in a blast furnace with coke and a current of air is blown through the heated mixture.

(f) In some conditions, steel corrodes more quickly than in others.

The graphs show the rate of corrosion of a particular type of steel under different controlled conditions.

www.papacambridge.com 13 A student took a sample of seawater and heated it using the apparatus shown below. 6 condenser Α seawater water heat (a) What is the name given to the process shown in the diagram?[1] (b) State the name of the piece of apparatus labelled A. [1] (c) Explain the function of the condenser. [2] (d) Pure water collects in the beaker. (i) State the pH of pure water.[1] (ii) State the boiling point of pure water. [1]

www.papacambridge.com (e) The table shows the mass of various compounds obtained when 1 litre of seaw evaporated.

compound	formula	mass of solid present / g
sodium chloride	NaC <i>l</i>	28.0
	MgCl ₂	8.0
magnesium sulphate	MgSO ₄	6.0
calcium sulphate	CaSO ₄	2.0
potassium chloride	KC1	
calcium carbonate	CaCO₃	1.0
potassium bromide	KBr	
		total mass = 45.0

How many grams of magnesium sulphate are present in 180 g of solid left by (i) evaporation of seawater?

(ii)	Which compound in the table reacts with acids to release carbon dioxide?	
		[1]
(iii)	State the name of the compound which has the formula $MgCl_2$.	
		[1]
(iv)	Calcium sulphate contains sulphate ions.	
	Describe a test for sulphate ions.	
	test	
	result	
		[3]

[1]

www.papacambridge.com 15 (f) Pure sodium chloride can be electrolysed using the apparatus shown below. electrodes molten sodium chloride heat Why does the sodium chloride have to be molten for electrolysis to occur? (i) [2] State the name of the product formed during electrolysis at (ii) the anode (positive electrode) the cathode (negative electrode) [2] Suggest a suitable substance which could be used for the electrodes. (iii) [1]

DATA SHEET The Periodic Table of the Elements

1 1								Grc	Group									
=												=	2	>	N	١١٨	0	
							L Hydrogen 1										4 Heium 2	
9 Be beryllium	9 Be ryllium											5 Boron 3	Carbon Garbon	14 Nitrogen	16 Oxygen 8	9 Fluorine	20 Neon 10	
24 Mg Magnesiu	24 Mg Magnesium 2											27 A1 Aluminium 13	28 Si licon	31 Phosphorus 15	32 Sulphur 16	35.5 C 1 Chlorine	40 Ar Argon	
40 Ca Calcium 20		45 Sc Scandium 21	48 48 Titanium 23	51 Vanadium	52 Cromium 24	55 Mn ^{Manganese} 25	56 Iron 26	59 Co 27	59 Nickel	64 Copper 29	65 Zn 30	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic 33	79 Selenium 34	80 Bromine 35	84 Krypton 36	16
Stror S	Strontium	89 89 Vttrium 39 40	91 Zr conium 4	93 Niobium	96 Molybdenum 42	Tc Technetium	101 Ruthenium 44	103 Rhodium 45	106 Pd Palladium 46	108 Ag Silver	112 Cadmium 48	115 In 149	50 Tin S	122 Sb Antimony 51	128 Te Tellurium 52	127 I Iodine 53	131 Xe 54	5
56 Bar H 1	137 Baarium Barium	139 La Lanthanum 57 * 72	178 Hf afnium 7	181 Tantalum	184 V Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 Ir Iridium	195 Pt Platinum 78	197 Au Gold 79	201 Hg Mercury 80	204 T 1 Thallium 81	207 Pb Lead	209 Bismuth 83	Polonium 84	At Astatine 85	Radon 86	
226 Rad iun 88		227 AC Actinium 89	-		-												_	
6 5	*58-71 Lanthanoid series 90-103 Actinoid series	series ies	88 88	Cerium Cerium	141 Praseodymium 59	144 Neodymium 60	Promethium 61	150 Sm samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb 65	162 Dysprosium 66	165 Holmium 67	167 Er ^{bium} 68	169 Tm Thulium	173 Yb Ytterbium 70	175 Lu Lutetium 71	4
	a = r b = p	a = relative atomic massX = atomic symbolb = proton (atomic) number	06	232 Thorium	Protactinium 91	238 Uranium 92	Neptunium 93	Plutonium 94	Am Americium 95	Curium Gurium	BK Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	LLT 10	MN Pap
					lume of o	ne mole	of any ga	is is 24 dr	n³ at roor	The volume of one mole of any gas is 24 dm ³ at room temperature and pressure (r.t.p.).	ature and	pressure	e (r.t.p.).			age.co.	Cambri	Cambridge.com