June 2003

INTERNATIONAL GCSE

CAMBRIDGE

www.papacambridge.com

MARKING SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0620/01

CHEMISTRY

(Multiple Choice)

Page 1	Mark Scheme
	IGCSE EXAMINATIONS – June 2003

	Mark So	cheme	42	MM. Paper 1 Baba Cambridge Com
	IGCSE EXAMINAT	IONS – June 2003		N.D 1
				202
				S.
				76.
				12
Question		Question		e.c.
Number	Key	Number	Key	×11
1	С	21	В	
2	B	22	D	
3	Α	23	Α	
4	D	24	В	
5	Α	25	D	
				-
6	С	26	В	
7	Α	27	D	
8	Α	28	D	
9	В	29	D	
10	С	30	В	_
				-
11	В	31	D	
12	D	32	D	
13	С	33	Α	
14	D	34	Α	
15	В	35	В	-
				-
16 17	C	36 37	A	
	A C		A	
18 10		38	B	
19	A	39	C	
20	С	40	С	_

TOTAL 40

June 2003

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/02

CHEMISTRY

(Core Paper 2)

—				4	
	F	Page 1	1	Mark Scheme Pape IGCSE EXAMINATIONS – June 2003	<u>er</u>
				ROOL EXAMINATION - Julie 2000	
1	(a)	(i) (ii) (iii) (iv) (v) (vi)	C/N/S/F O/S C	CALLOW F	hbridge.com
	(b)		carbon	- light bulbs; e - kills bacteria; - as lubricant; - in balloons	[4]
	(c)	(i) (ii) (iii)	ions/ch NOT: p	nt LLOW F ₅ Br arged particles; particles e to <u>move</u> in <u>solid</u> /free to move in <u>molten/liquid</u> state	[1] [1] [2]
2	(a)		drop si cotton ALLOW NOT: h	mall tube in acid/loosen string/idea of mixing zinc and acid/let go of V: cut the string leat (the acid) bull the string	[1]
	(b)	(i) (ii) (iii)	best cu no mor	plotting including 0-0 point (– 1 per omission or error) irve drawn and to go through origin e gas produced/reaction finished; reacted/used up	[2] [1] [2]
	(c)		ALLOW	drawn with faster initial rate and starting at 0-0; V: straight line as initial rate p at 55 cm ³	[2]
	(d)	(i) (ii) (iii)	2 (HC <i>l</i>) zinc ch 136 IGNOR	loride	[1] [1] [1]
	(e)		down to NOT 'c	nce containing only one type of atom/substance which cannot be broken o any other substance by <u>chemical means</u> an't be split' alone a pure substance	[1]
3	(a)	(i) (ii)	freezing NOT: fu		[1] [1]
		(iii)	conden	nsing/condensation/liquefaction	[1]
	(b)		2 nd box	ticked	[1]
	(c)		A; energy taking i	needed to overcome forces between molecules/idea of energy input/ in heat	[2]
	(d)	(i) (ii) (iii)	chlorine bromine sodium		[1] [1] [1]

	Page 2	Mark Scheme % Paper	r
	- J -	IGCSE EXAMINATIONS – June 2003	
(e)	(i)	Mark Scheme Paper IGCSE EXAMINATIONS – June 2003 2 diffusion NOT: Brownian motion ammonium chloride NOT: ammonia chloride NOT: ammonia chloride ammonia diffuses or moves faster/HC1 diffuses or moves slower/ammonia has lower mass/HC1 higher mass/molecules of HC1 and ammonia move at different speeds	
(-)		NOT: Brownian motion	26,
	(ii)	ammonium chloride NOT: ammonia chloride	19
	(iii)	ammonia diffuses or moves faster/HCl diffuses or moves slower/ammonia has lower mass/HCl higher mass/molecules of HCl and ammonia move at different	
		speeds NOT: ammonia evaporates faster/HC <i>l</i> evaporates more slowly	[1]
(f)		neutralisation/acid base NOT: exothermic NOT: addition	[1]
(g)	(i) (ii)	thermometer reference to the solid or melting point of the solid is needed for the mark.	[1]
		boiling point of water too low to get solid to melt/boiling water cannot get to 155°C NOT: boiling point of water is only 100°C/boiling point of water too low. NOT: water boils off first	[1]
	(iii)	so that the liquid is the same temperature throughout/no hot or cold spots/so the tube is the same temperature as the thermometer/so heat can circulate in all places	[1]
		ALLOW: so that temperature of liquid is balanced NOT: to keep temperature constant	
(a)		breaking down of molecules substances using heat	[1]
	(ii)	substance which speeds up a reaction NOT: alters/changes rate of reaction NOT: speeds up and slows down rate	[1]
(b)		ethene/ethylene NOT: formula	[1]
(c)	(i) (ii)	paraffin 4000g/4kg	[1] [1]
	(iii)	(correct unit needed) C_2H_4 ; H_2	[2]
(d)	(i)	two units polymerised with continuation bonds at either end and hydrogen atoms drawn ALLOW: $-CH_2CH_2CH_2CH_2$ -	[1]
		ALLOW: $-[-CH_2CH_2 -]_n$ ALLOW: $-[-CH_2 -]_n$	
	(ii)	addition (polymerisation)	[1]
(a)		(sodium) hydroxide/ammonia; \rightarrow green/grey green;	[2]
. ,		silver nitrate; \rightarrow yellow; ALLOW: lead nitrate NOT: cream	[2]
		ALLOW: bubble chlorine \rightarrow grey/black (precipitate)silver nitrate; \rightarrow white:	[2]
		barium chloride/nitrate; \rightarrow white; ALLOW: lead acetate	[2]

	+	Page 3		Mark Scheme Pape E EXAMINATIONS – June 2003	er
	(b)		filtration/filtering or dia be present on diagram NOT: decanting sodium chloride throug NOT: filtrate through fi	agram of correct apparatus for filtration (filter paper) gh filter paper/shown on diagram; lter paper om sodium chloride/suitable diagram	nbridge.com
	(c)		(reference to mixtures	nts nded/combined (both points needed) = 0 unless qualified enough in time frame e.g. a mixture then chemically combined)	[1]
	(d)	(i) (ii)	chlorine/C <i>l</i> ₂ sodium/Na		[1] [1]
6	(a)		potassium/magnesium	n/aluminium	[1]
	(b)		they did not have ele metal existed NOT: did not have the	ctricity/did not know about electrolysis/did not know the right technology	[1]
	(c) (d) (e)	(ii) (iii)	faster than zinc OR number of bubbles uranium dissolved slo medium rate etc. atoms of same elen neutrons/different nucl NOT: compounds/mole indication of use for er ALLOW: atomic/nuclea NOT: curing cancer/me NOT: 'for fuel' magnesium oxide ALLOW: MgO	ecules with different mass number hergy – nuclear power stations/nuclear energy ar bombs edical uses	 [1] [1] [1] [1] [1] [1]
	(e)	(i) (ii)	corrosion resistance/h NOT: increase in melti NOT: cheaper NOT: improving prope	/decreased malleability/increased toughness/increased eat or electrical resistance increased ing point rties	[1]
	(f)		removes oxygen from ALLOW: definition of r	zinc oxide eduction involving oxidation numbers/electron transfer	[1]
	(g)	(i)	reversible reaction ALLOW: equilibrium		[1]
		(ii)	76-80%		[1]
	(h)	(i) (ii)		cture of Mg (2.8.2) on diagram ses its valence electrons = 2	[1]
			loses electron(s) = 1 forms Mg^{2+} ion by losir	ng electrons = 2	[2]

June 2003

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/03

CHEMISTRY

(Extended Paper 3)

Page 1	Mark Scheme	Paper
	IGCSE EXAMINATIONS – June 2003	3
n the mark scheme f the mark.	if a word or phrase is underlined it (or an equivalent) is required it	bacambrid
) is used to den	ote material that is not specifically required.	Tigs
R designates alter	native and independent ways of gaining the marks for the question.	S.Com
r indicates different	t ways of gaining the same mark.	

COND indicates that the award of this mark is conditional upon a previous mark being gained.

- Unusual responses which include correct Chemistry that answers the question should always be rewarded-even if they are not mentioned in the marking scheme.
- All the candidate's work must show evidence of being marked by the examiner.

1	(a)	A correct equation either CO or CO ₂ as product If not balanced but otherwise correct [1] ONLY	[2]				
	(b) (i) (ii)	$C + O_2 \rightarrow CO_2$ NOT word equation (higher in furnace) no oxygen left carbon dioxide reacts with carbon (to give carbon monoxide)	[1] [1] [1]				
		OR incomplete combustion of carbon	[2]				
		OR either equation gains both marks $CO_2 + C = 2CO \text{ or } 2C + O_2 = 2CO$					
		OR carbon dioxide reacts with carbon	[1] [1]				
	(c)	limestone + sand \rightarrow slag OR calcium carbonate + silicon (IV) oxide \rightarrow calcium silicate (+ carbon dioxide)	[2]				
		For knowing that impurity is sand [1] ONLY					
		Accept calcium oxide and silicon oxide Accept lime					
	(d) (i) (ii) (iii	Cutlery or chemical plant or watches or utensils or surgical instruments or cars or sinks or aircraft or garden tools [nickel or chromium or molybdenum or niobium or titanium [blow air/oxygen through carbon becomes carbon dioxide carbon dioxide escapes as gas silicon and phosphorus become oxides calcium oxide or calcium carbonate					
		forms slag Any FOUR NOT blast furnace	[4]				
	(e)	anode tin NOT impure time cathode iron or steel tin salt or tin ions as electrolyte NOT oxide or hydroxide or carbonate	[1] [1] [1]				
		τοται	- 16				

Page 2			Mark Scheme Paper IGCSE EXAMINATIONS – June 2003 3 ignore any charges 3 nelting or boiling point 4 conductor of electricity or heat [2] WO [2]				
			IGCS	SE EXAMINATIONS – June 2003	12.D. 3		
					800		
(a)	(i)	3	ignore any cha	arnes	·Ca.		
ູພາ	(i) (ii)		nelting or boiling	-	1		
	()	hard) point			
			onductor of ele	ctricity or heat			
		brittle					
		Any T\	NO				
			nsoluble, dull, c	r malleable			
	(iii)		• •	nond silicon, germanium			
			• •	ilica or silicon dioxide or silicon oxide			
				bide or named polymer			
	(iv)		ound one	· · · ·			
				al or shows continuation			
		-] weak bonds between layers [1]			
				lecule, no link with (iii)			
		For po	lymer repeat ui	nit [1] continuation [1]			
(b)	(i)	white p	<u>orecipitate</u>				
1)	(-)		upon a precipi	tate			
				r forms solution			
	(ii)		recipitate				
	• •		upon a precipi	tate			
		does n	not dissolve in e	XCess	I		
(-)	/1\	······		-0.04/04 = 0.04			
(c)	(1)			$_2 = 0.24/24 = 0.01$			
				oles of $CaCO_3$ and $MgCO_3 = 0.01$ oles of $CaCO_3 = 0.005$	ł		
	(ii)			of hydrochloric acid, 1.0 mole/dm ³ , nee	ded to react with		
	(11)	one ta					
				CaCO ₃ and MgCO ₃ in one tablet = 0.01			
				ver to $(c)(i)$. NO marks to be awarded.	Just mark		
		-	quentially to thi		ouor main		
				oles of HCl needed			
			ct with one tabl				
		conse	q volume of hy	/drochloric acid, 1.0 mole/dm ³ , needed t			
		tablet	$= 0.02 \text{ dm}^3 \text{ or } 2$	20 cm°	I		
					TOTAL =		
(a)	(i)		ct equation				
				mula of alkane and alkene [1] only			
		•	t alkene and hy	/drogen			
	(ii)	chlorin					
				or heat or lead tetraethyl			
		-	h temperature l				
		Ignore	comment 'cata	llyst			
(b)	(i)	same	molecular form	ula			
(~)	(י)			r structural formulae			
	(ii)		ene or cyclobut				
	(יי)		ponding structu				
			2-butene		I		
(c)		butanc		ignore numbers			
		butane		ignore numbers			
		dibrom	nobutane	ignore numbers			

			Mark Schomo				
ł	Page 3	IGCSE E	Mark Scheme EXAMINATIONS – June 2003	MANAN Paper 3 3 anacambridg [1]			
				2030			
(d)	(i)	propene		amp			
		CH ₃ —CH==CH ₂		Tid			
	(ii)	Correct structure of repe		[1]			
		ignore point of attachmer COND upon repeat unit	nt of ester group				
		shows continuation If chain through ester gro	oun [0] out of [2]	[1]			
	(iii)	do not decay or non-biod	degradable				
		shortage of sites or amou visual pollution	unt of waste per year				
		forms methane Any TWO		[2]			
	(iv)	form poisonous or toxic (gases or named gas CO, HC <i>l</i> HCN	[1]			
		NOT carbon dioxide, har	rmful, sulphur dioxide				
				TOTAL = 18			
(a)	(i)	Correct equation not balanced [1] ONLY		[2]			
		$(NO_3)_2 = 2PbO + 4Nc$	O ₂ + O ₂				
		$Pb(NO_3)_2 = PO + 2 NO_2$	$+\frac{1}{2}O_2$				
	(ii)	potassium nitrate $ ightarrow$ pota	assium nitrite + oxygen	[1]			
(b)	(i)	close or tightly packed		[1]			
		ordered or lattice vibrational		[1] [1]			
	(ii)	NOT forces melting or freezing or fus	sion or solidification	[1]			
(c)		oxygen and nitrogen (in a					
(c)	(1)	react at high temperature	es (and high pressure)	[1] [1]			
	(ii)	If nitrogen in fuel [0] out o <u>catalytic converter</u>	of [2]				
	()	react with carbon monox form nitrogen	kide or hydrocarbons				
		ANY TWO		[2]			
(d)		Add excess lead oxide to	o nitric acid	[1]			
		can imply excess filter NOT if residue is lea	ad nitrate	[1]			
		evaporate or heat solutio	on	[1]			
				TOTAL = 14			
(a)		protons 2					
		electrons 2 neutrons 4		[3]			
(b)	(i)	La ³⁺ + 3e- = La		[1]			
. /	(ii)	hydrogen bromine NOT Bromide		[1] [1]			
		caesium hydroxide		[1]			
		ignore any comments ab	oout electrodes				

Page 4		Mark Scheme	Paper
		IGCSE EXAMINATIONS – June 2003	N.D. 3
(c)	metal l hydrog	hydroxide or hydroxide ions gen	Pacambric
(d)	charge 8e aro All thre Two pe	ee points	Manuel Babacambridge. [2]
(e)	alterna patterr	ating (positive and negative) n	[1] [1]
(f) (i) (ii)	bond for bond b	n - oxygen or ionic forming energy released/exothermic breaking energy taken in/endothermic energy released	[1] [1] [1] [1]
			TOTAL = 17

Total for Paper: 80

June 2003

MARKING SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0620/05

CHEMISTRY

(Practical)

	Page 1			IGC	Mark So SE EXAMINATI	cheme ONS – June 2003	32	Paper 5
L					<u> </u>			Par l
1				of results iment 1	Initial and fina	al readings recorded		Paper 5 Papacambridge.com [1]
			Exper	iment 2	Initial and fina	to 1 decima al readings recordec		stigge
						to 1 decima	al place	[1] Com
			Result	ts comparable	to Supervisor's	s results ± 1 cm ³		[2]
	(a)		red/bu	irgundy/brown				[1]
	(b)			(1) to blue/bla RE green	ck (1)	see Supervisor		[2]
	(c)	(i)	Exper	iment 1				[1]
		(ii) (iii)	potass	sium iodate les	s concentrated	ent 1 (1) <u>not</u> just mo solution C than B o		[2] [1]
		(iv)		ferent concent	rations e for Experime	nt 1 (1) unit (1)		[2]
		()		line formed				[1]
	(d)			tor (1) referend st for I ₂ /I ⁻	e to accuracy	(1)/end-point/see mo	ore clearly	[2]
				-			[Questic	on total: 18]
2	(a)		bubble	es/condensatio	n/goes black		max 2	[2]
	(b)			e - colourless <u>r</u> le - green	<u>ot</u> clear			[1] [1]
	(c)	(i)		escence/fizz/bu ater \rightarrow milky	ubbles			[1] [1]
		<i>/</i>	solutic	on is blue				[1]
		(ii)		1) precipitate (deep blue (1) s				[2] [2]
	(d)	(i) (ii) (iii)	white		(1) dissolves in (1) dissolves (1			[3] [3] [1]
	(e)		zinc (1	I) sulphate (1)		reversed =	0	[2]
	(f)			er (1) carbonate ted (1)	e (1)	reversed = 0	max 2	[2]
							[Questic	on total: 22]
							[Total fo	r paper: 40]
			Result	ts obtained for	Question 1/cm	3		

	1 st	2 nd
Experiment 1	16.5	16.3
Experiment 2	8.3	8.2

June 2003

MARKING SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0620/06

CHEMISTRY

(Alternative to Practical)

				4					
Page 1					ark Scheme INATIONS – June 20	103 M	Paper 6		
L			I	10001 2/2					
1	(a)		B = stir C = trip	ortar (1) irrer/stirring rod (1) pod (1) unsen Burner (1)	<u>not</u> thermor	neter	Paper 6 303 Cambridge.com [1]		
	(b)		filtratio	n			[1] 9177		
	(c)		D or de	escription			[1]		
2	(a)			se precipitate formed/go ır (1)/turbid	bes cloudy (1)		[2]		
	(b)		referen	nce to fair test/comparis	on/same depth		[1]		
	(c)		sodium	n thiosulphate/water 1 st /	2 nd acid, last		[1]		
	(d)	(i) (ii)	smooth label (1 line low	wer down (1)	y incorrect		[5]		
			does n	not touch other line (1)			[2]		
	(e)			would be longer (1) beca e area/depth (1)	ause solution more	spread out/reference to	[2]		
3				of results t burette readings in tab i.e. 16.8, 17.1 a		or 17.2, 18.9, 26.5			
		<i>(</i>)		ences correctly complete i.e. 8.4		Difference 7.6	[4]		
	(a)	(ii) twice (iii) Soluti B mo	Solutio B more	ment 1 volume/more than twice on B was 2x (1) concent e concentrated than C (e A = 33.6 (1) cm ³ (1)/34	tration of C (1) or sin 1 only)	milar	[1] [1] [2]		
		(1•)		ine produced (1)	T. TOITI		[3]		
	(b)		referen <u>not</u> tes	nce to accuracy (1) indicate to accuracy (1) indicate to I_2 max 2	cator (1)/easier to se	ee	[2]		
4	(c)			escence/fizz/bubbles (1) ater milky (1)/blue solutio			[2]		
	(d)	(ii)		1) precipitate (1) lark blue (1) solution (1))		[4]		
	(e)	(i)	white (dissolv	(1) precipitate (1) ves (1)			[3]		
		(ii)		(1) precipitate (1)			[3]		
	(f)		Solid D) is a sulphate (1) hydra	ated (1)		[2]		
	(g)		copper	r (1)/Cu ²⁺ (2)			[2]		

_		-		4
Page 2			Mark Scheme	A Paper
			IGCSE EXAMINATIONS – June 2003	206
5	(a) (i) (ii)	result	th line graph at 5 minutes (1) curve (1)/gas escapes, gone down	hunne paper 6 Banacambridge [1]
	(b)	0.8 g		[1] Com
	(c)		nce to leak/loss of gas (1) umes lower (1)	[2]
6		add ex filter (<i>1</i>	n mass of beach sand (1) kcess (1) dilute hydrochloric acid (1) 1) wash (1) dry (1) residue eigh sand (1) working out result (1) max 6 of 8	[6]
				[Total: 60]

		MMM. P					
					×		
Grade threshol			• /				
	maximum mark	maximum minimum mark required for grade:		ade:			
	available	A	С	E	F		
Component 1	40	-	26	20	17		
Component 2	80	-	52	36	27		
Component 3	80	53	31	-	-		
Component 5	40	31	24	18	14		
Component 6	60	42	32	21	15		

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.