Centre Number Candidate Number Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.PapaCambridge.com **CHEMISTRY** 0620/02

Paper 2

May/June 2004

1 hour 15 minutes

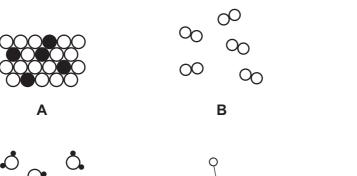
Candidates answer on the Question Paper. No Additional Materials required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.

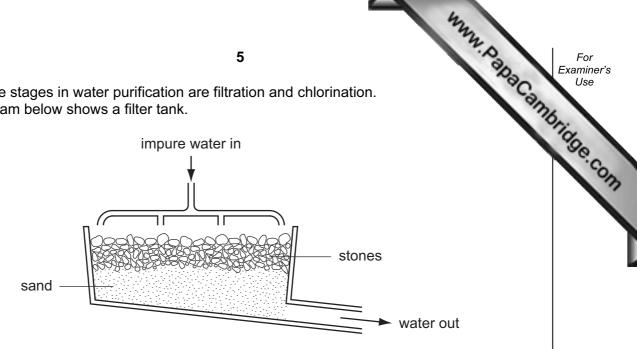

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examin	ner's Use
1	
2	
3	
4	
5	
6	
Total	

1 The diagram shows models of various structures,

D


C

(a)	Wh	ich three of the structures A to F represent elements? Give a reason for your ans	wer.
	stru	uctures	
	rea	son	[2]
(b)	Wh	ich one of the structures A to F represents a gas containing single atoms?	
			[1]
(c)	(i)	Which one of the structures A to F represents a gas containing diatomic molecular	les?
	(ii)	State the name of a gas which has diatomic molecules.	
			[2]
(d)	(i)	Which one of the structures A to F represents graphite?	
	(ii)	State one use of graphite.	
			[2]

						m.
				3		1. Day
(e)	Stru	ucture D repres	ents a compound.			ACO.
	(i)	State what is r	meant by the term col	mpound.		MMM, PADA CAIT
((ii)	Which one of t	the following substan	ces is structure E m	ost likely to rep	resent?
		Put a ring arou	und the correct answe	er.		
		ammonia	hydrogen chlor	ide metha	ne water	[2]
(f)	Hyc	drogen chloride	is a compound.			
	(i)	Draw a diagra chloride.	m to show how the e	lectrons are arrange	ed in a molecule	e of hydrogen
		Show only the	outer electrons.			
					ow hydrogen ele now chlorine ele	
				5	iow cilionne en	ections as x
						[2]
((ii)	State the nam	e of the type of bondi	ing present in hydro	gen chloride.	
						[1]
(i	iii)		oride dissolves in wat			ochloric acid).
		Describe how	you would use litmus	s paper to show that	this solution is	acidic.
						[2]
(i	iv)		the following values Irochloric acid?	s is most likely to r	epresent the p	H of a dilute
		Put a ring arou	und the correct answe	er.		
		pH 2	pH7	pH10	pH14	[1]

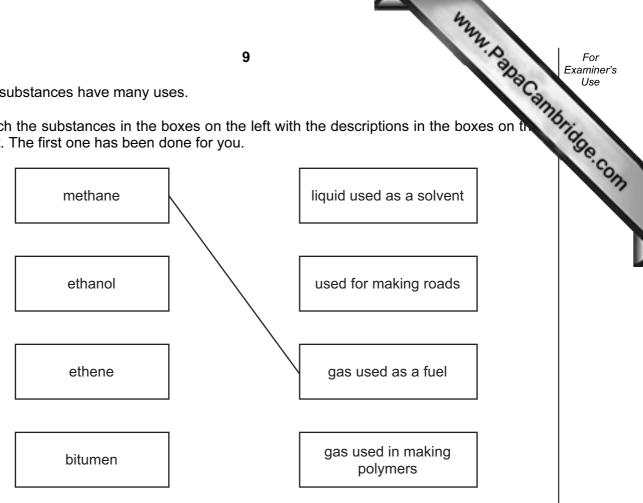
(v)	Complete the following equation for the reaction of hydrochloric acid magnesium.	Cambrio
	$Mg(s)$ + $HCl(aq)$ \rightarrow $MgCl_2(aq)$ + $H_2(g)$	[1]
(vi)	Name the salt formed in this reaction.	
		[1]

Two of the stages in water purification are filtration and chlorination. The diagram below shows a filter tank.

(a)	Exp	plain how this filter helps purify the water.	
			[2]
(b)	(i)	Why is chlorine added during water purification?	
	(ii)	After chlorination, the water is acidic. A small amount of slaked lime is added to tacidic water. Explain why slaked lime is added.	the
	(iii)	What is the chemical name for slaked lime?	
	(iv)	State one other use of slaked lime.	
			[4]

(c)	(i)	State the	e boilin	g point of p	oure water.			Example 1	1.
	(ii)		e a che	mical test	for water.			B	.0,
		test						[1]	
		result						[1]	
	(iii)	State on	ne use	of water in	the home.				
								[1]	
(d)	The	e diagram	shows	s the arranç	gement of particles	in the thre	e different states of wate	er.	
) ())	0					
		A	A		В		С		
	Wh	ich of the	se diaç	grams, A , E	B or C , shows wate	r in a solid	state?		
					•••••			[1]	
(e)		am reacts reaction.		ethene in th	ne presence of a ca	ıtalyst. Co	mplete the word equation	n for	
	ethe	ene	+	steam	→			[1]	
(f)	Pot	tassium re	eacts v	iolently witl	h water. Complete	the word e	quation for this reaction.		
	pota	assium	+	water	→		+		
								[2]	

	n lumps of calcium carbonate react with hydrochloric acid, carbon dioxide sed. $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$ Describe a practical method for investigating this reaction, which would enable you calculate the rate of reaction.	
	7	
	n lumps of calcium carbonate react with hydrochloric acid, carbon dioxide sed.	OC ON
1616	CaCO ₃ (s) + 2HC l (aq) \rightarrow CaC l_2 (aq) + CO ₂ (g) + H ₂ O(l)	B
(a)	Describe a practical method for investigating this reaction, which would enable yo	u to
(,	calculate the rate of reaction.	
		[4]
(b)	What effect will the following have on the rate of the reaction?	
	i) increasing the temperature	
	i) adding water to the acid	
	i) using powdered calcium carbonate instead of lumps	
		[3]
(c)	Describe a test for calcium ions.	
	esult	
	est	
		[3]


- (d) Calcium can be obtained by the electrolysis of molten calcium chloride.
- www.PapaCambridge.com (i) Suggest why calcium must be extracted by electrolysis rather than by reduction with carbon.

(ii) Draw the electronic structure of an atom of calcium.

[2]

[3]

- Organic substances have many uses.
 - (a) Match the substances in the boxes on the left with the descriptions in the boxes on the right. The first one has been done for you.

(b) Which one of the following would be least likely to be obtained from the fractional distillation of petroleum? Put a ring around the correct answer.

bitumen ethane ethanol methane [1] (c) Some reactions of organic compounds are shown below.

Α	n CH ₂ =CH ₂ -	-	—— CH ₂ —	-CH ₂ -)	- ,
---	--------------------------------------	----------	----------------------	--------------------	--------------	-----

B
$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

C
$$C_6H_{12}O_6$$
 \longrightarrow $2CO_2 + 2C_2H_5OH$ glucose

D
$$C_8H_{18}$$
 \longrightarrow $C_6H_{14} + C_2H_4$

(i)	Which one of the reactions, A , B , C or D , shows fermentation?

(ii)	Which one of the reactions, A , B , C or D , shows polymerization?	

(iii) Which one of the reactions, A, B, C or D, shows combustion?

(iv) Which **one** of the reactions, **A**, **B**, **C** or **D**, shows cracking?

(d) The hydrocarbon C_8H_{18} is an alkane.

(i) What is meant by the term hydrocarbon?

(ii) Explain why this hydrocarbon is an alkane.

[2]

5 Look at the list of five elements below.

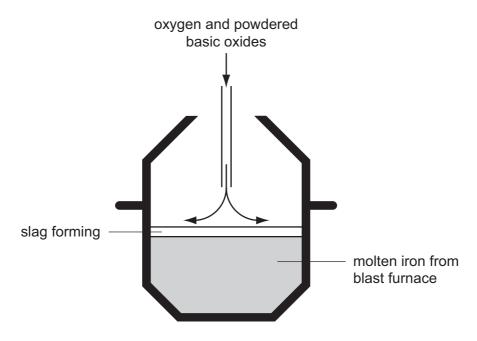
		*	
		11	For Examine Use
Loc	ok at	the list of five elements below.	Cally.
		argon bromine chlorine iodine potassium	For Examine Use
(a)	Put	these five elements in order of increasing proton number.	
			[1]
(b)	Put	these five elements in order of increasing relative atomic mass.	
			[1]
(c)		e orders of proton number and relative atomic mass for these five elements erent. Which one of the following is the most likely explanation for this?	are
	Tick	k one box.	
	The	e proton number of a particular element may vary.	
	The	e presence of neutrons.	
	The	e atoms easily gain or lose electrons.	
		e number of protons must always equal the number of utrons.	
	1160		[1]
(d)	Wh	ich of the five elements in the list are in the same group of the Periodic Table?	
(~/		The second control of the second seco	[1]
			.,
(e)	(i)	From the list, choose one element which has one electron in its outer shell.	
			[1]
	(ii)	From the list, choose one element which has a full outer shell of electrons.	
			[1]

	The state of the s	
	12	8
(f)	Which two of the following statements about argon are correct?	OC ON
	Tick two boxes.	
	Which two of the following statements about argon are correct? Tick two boxes. Argon is a noble gas.	·
	Argon reacts readily with potassium.	
	Argon is used to fill weather balloons.	
	Argon is used in light bulbs.	[2]
(g)	Potassium chloride can be made by reacting potassium with chlorine. The bond potassium chloride is ionic.	ing in
	What does this information tell you about	
	(i) the boiling point of potassium chloride,	
		[1]
	(ii) the electrical conductivity of molten potassium chloride?	
		[1]
(h)	Describe the change in the electronic structure of potassium and chlorine atoms they combine to make potassium chloride.	when
	change in potassium atom	
	change in chlorine atom	
		[0]
		[2]

	For
1	Examiner's
	1100

[2]

www.PapaCambridge.com Iron is extracted from its ore in a blast furnace using carbon (coke) as a reducing age 6 as a source of heat. (a) The coke burns in hot air. The equation for this reaction is 2C(s) $O_2(g)$ 2CO(g) State the name of the gas produced in this reaction. [1] **(b)** Near the top of the blast furnace, the iron(III) oxide in the iron ore gets reduced to iron. $Fe_2O_3(s) +$ 3CO(g) 2Fe(I) $3CO_2(g)$ Use the equation to explain why the change of iron(III) oxide to iron is a reduction reaction. [1] (c) In the hottest regions of the furnace, iron(III) oxide is reduced by carbon.


 \rightarrow Fe(I)

3CO(g)

Complete the equation for this reaction.

 $Fe_2O_3(s)$ + C(s)

www.PapaCambridge.com (d) The iron from the blast furnace contains up to 10% by mass of impurities. The impurities are carbon, silicon and phosphorus. The diagram below shows one met. of making steel from iron.

A mixture of oxygen and basic oxides is blown onto the surface of the molten iron.

(i)	What is the purpose of blowing oxygen onto the molten iron?	
		[1]
(ii)	A large amount of energy is released in the process of steelmaking. What name is given to chemical reactions which release energy?	
		[1]
(iii)	The basic oxides react with the impurities in the iron and form a slag. Wh information in the diagram suggests that the slag is less dense than the molte iron?	
		[1]
(iv)	Which one of the following is a basic oxide? Put a ring around the correct answer.	
	calcium oxide carbon dioxide sulphur dioxide water	[1]
(v)	Why is steel rather than iron used for constructing buildings and bridges?	
		[1]

(e) Special steels contain added elements such as vanadium, chromium, cobalt or These are all transition metals.
 State three properties of transition metals which are not shown by non-transition metals.
 1.

2.

3. [3]

(f) What is the name given to metals which are mixtures of more than one metal?

[1]

	Elements
DATA SHEET	The Periodic Table of the

										_
		0	4 He Heium 2	20 Ne Neon	40 Ar Ar Argon	84 Kr Krypton 36	131 Xe Xenon Xenon	Rn Radon 86		11
		II/		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		1
				16 O Oxygen 8	32 S Sulphur 16	79 Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		00
		>		14 N Nitrogen 7	31 P Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		7
		2		12 C Carbon 6	28 Si Silicon	73 Ge Germanium 32	Sn Tn Tn	207 Pb Lead		L
		=			27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49			0
3						65 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercury 80		
						59	108 Ag Silver 47	197 Au Gold		1
	Group					59 N ickel 28	106 Pd Palladium 46	195 Pt Platinum 78		
	Gr			1		59 Co Cobalt 27	103 Rh Rhodium 45	192 I r Iridium		,
			1 Hydrogen			56 Fe Iron	Ruthenium 44	190 Os Osmium		
						Mn Manganese	Tc Technetium 43	186 Re Rhenium		
						Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		
						51 Vanadium 23	Nobium 41	181 Ta Tantalum 73		
						48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72		
						Scandium 21	89 ×	139 La Lanthanum 57 *	Actinium Actinium 89	
		=		9 Be Beryllium	Mg Magnesium 12	40 Ca calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	
		_		7 Li Lithium	23 Na Sodium	39 K Potassium	Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	
of C	ambri	dge Ir	nternational E	Examinations is	s part of the U	Iniversity of C	ambridge Lo	cal Examination	ons Syndicate (·

140	141	144		150	152	157	159	162		167	169	173	175	
င္မ	፫	PZ	Pm	Sm	Ш	၉	₽ L	2	운	ш	Ę	Υp	ב	
Cerium P	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66 6		Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71	4
232 Th Thorium	Pa Protactinium	238 U	Neptunium	Pu	Am Americium	Cm Curium	BK Berkelium	Cf Californium	ES Einsteinium	Fm Fermium	Md Mendelevium	Nobelium	Lawr	Md No Lr
6 06	91	92	93	94	95	96	26	86	66	100	101	102	10	20
The vol	ume of c	one mole	of anv de	The volume of one mole of any gas is 24 dm 3 at room temperature and pressure (r.t.p.).	n³ at roon	n tempera	iture and	Dressure	(r.t.p.).				Can	1
				; !		<u> </u>						1	Top.	
												Se.	-	
												200		
											7	1		

b = proton (atomic) number

٩

Key

a = relative atomic mass X = atomic symbol

*58-71 Lanthanoid series 90-103 Actinoid series