UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY

Paper 3

0620/03

October/November 2004

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials required.

Candidate Name		
Centre	Candidate	
Centre Number	Number	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

WRITE IN THE BOXES PROVIDED ON THE QUESTION PAPER

DO NOT WRITE IN THE BARCODE.

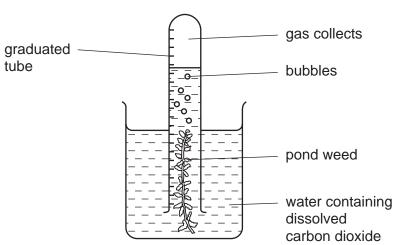
DO NOT WRITE IN THE GREY AREAS BETWEEN THE PAGES.

Do not use staples, paper clips, highlighters, glue or correction fluid.

You may use a calculator.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part questions.


A copy of the Periodic Table is printed on page 16.

For Examir	ner's Use
1	
2	
3	
4	
5	
6	
7	
8	
Total	

This document consists of 15 printed pages and 1 blank page.

l (a)	Two of the gases in air are nitrogen and oxygen. Name two other gases pre unpolluted air.
	[2]
(b)	Two common pollutants present in air are sulphur dioxide and lead compounds. State the source and harmful effect of each. sulphur dioxide
	source
	harmful effect [3]
	lead compounds
	source
	harmful effect [2]
(c)	Respiration and photosynthesis are two of the processes that determine the percentage of oxygen and of carbon dioxide in the air.
	(i) Name another process that changes the percentages of these two gases in air.
	[1]
	(ii) The equation for photosynthesis is given below.
	$6CO_2 + 6H_2O \longrightarrow C_6H_{12}O_6 + 6O_2$
	This is an endothermic reaction.
	Complete the reaction for respiration.
	C ₆ H ₁₂ O ₆ + 6O ₂ → +
	This is an reaction.

www.PapaCambridge.com (d) The rate of photosynthesis of pond weed can be measured using the fo experiment.

(i)	Describe how	you could	show that the	gas collected in	this experiment	is oxygen.
-----	--------------	-----------	---------------	------------------	-----------------	------------

• •
• •
1.1
1.1
1.1
1.1
1.1
ι.,
ניו
ניז
ניז
ניו
נין
נין
נין
נין
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

(ii) What measurements are needed to calculate the rate of this reaction?

(iii) What would be the effect, and why, of moving the apparatus further away from the light?

[2]

www.PapaCambridge.com Complete the list of instructions for making copper(II) sulphate using six of the words below. blue dilute filter cool sulphate white saturated oxide Instructions 1 sulphuric acid in a Add excess copper(II) oxide to beaker and boil it. 2 to remove the unreacted copper(II) oxide. 3 Heat the solution until it is

the solution to form

[6]

coloured crystals of copper (II)

(a) It is manufactured by the following reversible reaction.

CO (g) +
$$2H_2$$
 (g) \rightleftharpoons CH₃OH (g) $300\,^{\circ}$ C $30atm$

(i)	Reversible reacti	ons can come	to equilibrium.	Explain the	term <i>equilibrium</i>
-----	-------------------	--------------	-----------------	-------------	-------------------------

	[1]

(ii) At 400 $^{\circ}$ C, the percentage of methanol in the equilibrium mixture is lower than at 300 $^{\circ}$ C. Suggest an explanation.

	[2]

(iii) Suggest two advantages of using high pressure for this reaction. Give a reason for each advantage.

advantage	
reason	

advantage	
reason	
	[5]

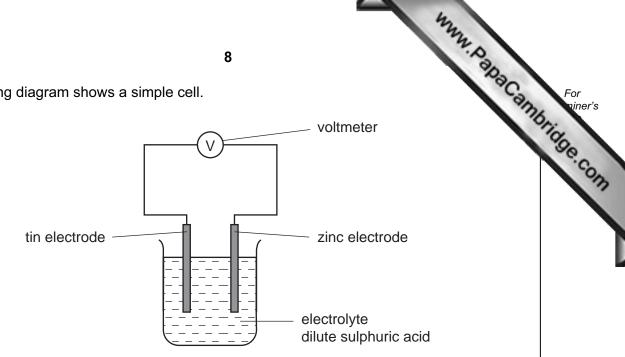
(i)	Complete the equation for the combustion of methanol in an excess of oxygen	TOO CO
	CH ₃ OH +	A. PapaCal.
(ii)	Complete the word equation.	
	methanol + ethanoic acid → +	
		[2]

4	In the following list of ionic equations, the metals are in order of reactivity.

- (a) (i) In the space at the top of the series, write an ionic equation that includes a more reactive metal. [1]
 - (ii) Define oxidation in terms of electron transfer.

[1]

(iii) Explain why the positive ions are likely to be oxidising agents.


	[1]

(iv) Which positive ion(s) can oxidise mercury metal (Hg)?

	[1]
--	-----

For niner's

(b) The following diagram shows a simple cell.

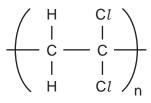
(i) Predict how the voltage of the cell would change if the tin electrode was replaced with a silver one.

[1]

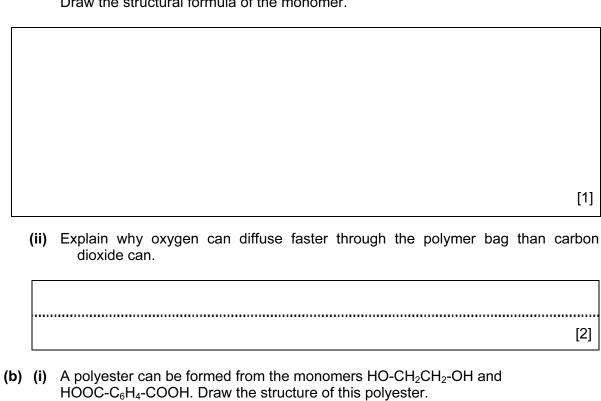
(ii) Which electrode would go into the solution as positive ions? Give a reason for your choice.

[1]

(iii) State how you can predict the direction of the electron flow in cells of this type.


Strontium and sulphur chlorides different properties.	9 s both have a formula of th	sulphur chloride red liquid	For niner's
property	strontium chloride	sulphur chloride	ale.C
appearance	white crystalline solid	red liquid	OW
melting point / °C	873	-80	
particles present	ions	molecules	
electrical conductivity of solid	poor	poor	
electrical conductivity of liquid	good	poor	

electri	cal conductivity of liquid	good	poor
		are similar because both eleup VI elements both have a v	
			[2
mo Use	aw a diagram showing the lecule of sulphur chloride. e x to represent an electron e o to represent an electro		cy electrons in one covaler
			[
Explain	the difference in electrical	conductivity between the follo	owing.
(i)	solid and liquid strontium	chloride	
			[
(ii)	liquid strontium chloride a	and liquid sulphur chloride	
	•		


Polymers are extensively used in food packaging. Poly(dichloroethene) is used by	For
gases can only diffuse through it very slowly. Polyesters have a high thermal stability	niner's
gases can only diffuse through it very slowly. Polyesters have a high thermal stability food can be cooked in a polyester bag.	Or.
	0

(a) (i) The structure of poly(dichloroethene) is given below.

Draw the structural formula of the monomer.

[2]

(li)	Name a naturally occurring class of compounds that contains the ester linkage.
(iii)	Suggest what is meant by the term thermal stability.
	[1]
(i)	Describe two environmental problems caused by the disposal of plastic (polymer) waste.
	[2]
	The best way of disposing of plastic waste is recycling to form new plastics. What is another advantage of recycling plastics made from petroleum?
	[1]

(a)	(i)	Write a symbol equation for the act	ion of heat on zinc hydroxide.	acal acal
				[2]
	(ii)	Describe what happens when solid	sodium hydroxide is heated	strongly.
				[1]
(b)	Wha	at would be observed when copper(II) nitrate is heated?	
				[3]
(c)	(c) Iron(III) sulphate decomposes when heated. Calculate the mass of iron(III) ox formed and the volume of sulphur trioxide produced when 10.0 g of iron(III) sulpha was heated. Mass of one mole of Fe ₂ (SO ₄) ₃ is 400 g.			
		$Fe_2(SO_4)_3$ (s) \longrightarrow	► Fe ₂ O ₃ (s) + 3SO ₃ (g)	
		Number of moles of $Fe_2(SO_4)_3 =$		
	Ν	lumber of moles of Fe ₂ O ₃ formed =		
		Mass of iron(III) oxide formed =	g	
	N	umber of moles of SO ₃ produced =		
	\	/olume of sulphur trioxide at r t p =	dm^3	[5]

8 The alkenes are a homologous series of unsaturated hydrocarbons.

www.PapaCambridge.com (a) The table below gives the names, formulae and boiling points of the first members the series.

name	formula	boiling point/°C
ethene	C ₂ H ₄	-102
propene	C ₃ H ₆	-48
butene	C ₄ H ₈	-7
pentene	C ₅ H ₁₀	30
hexene		

(i)	Complete the table by giving the formula of hexene and by predicting its boiling point.
	[2]
(ii)	Deduce the formula of the alkene which has a relative molecular mass of 168. Show your working.
	rol
	[2]

(b) Describe a test that will distinguish between the two isomers, but-2-ene and cyclobutane.

test	
result with but-2-ene	
result with cyclobutane	[3]

		Q.
(c)	Alkenes	s undergo addition reactions.
	(i)	What class of organic compound is formed when an alkene reacts with water?
		[1]
	(ii)	Predict the structural formula of the compound formed when hydrogen chloride reacts with but-2-ene.
		[1]
	(iii)	Draw the structure of the polymer formed from but-2-ene.
		[2]

BLANK PAGE

www.PapaCambridge.com

Every reasonable effort has been made to trace all copyright holders where the publishers (i.e. UCLES) are aware that third-party material has been reproduced. The publishers would be pleased to hear from anyone whose rights they have unwittingly infringed.

	Elements
DATA SHEET	The Periodic Table of the

								Gre	Group									
_	=											=	>	>	>	II/	0	
							1 Hydrogen										4 He Helium	
Lithium 3 Lithium 3 Ra Sodium 11	Be Beryllium 4 24 Mg Magnesium 12							7				11 Beron 5 27 Al Aluminium	Carbon 6 Carbon 8 Silicon 14	Nitrogen 7 31 31 Phosphorus 15	16 Oxygen 8 32 32 Suphur 16	19 Fluorine 9 35.5 C.1 Chlorine	Neon 10 Neon 10 Ar Argon	
39 R Potassium 19 85 R B S R B S R Ubidium 37 133 Caesium 56	Calcium 20 Calcium 20 Strontium 38 Strontium 38 Barturn 56 Barturn 56	Sc 21 21 39 39 Land Land Land Land Land Land Land Land	Thanium 22 Zr Stronium 91 22 Zr Contum 40 Tr8 Hafrium 72	51 Vanadium 23 NB NB NB NB NB NB 181 Ta Tanasum 73	52 Cr. Chromium 24 96 Molybdenum 42 184 W Tungsten 74	Manganese 25 TC TG TG 43 Rhenium 75	Fe Fe From 101 Page 101 Page 101 Page 101 Page 102 Page 1	Cobalt 27 Cobalt 103 Rh Rhodium 192 Ir	Nickel 28 Nickel 28 Palladium 46 Palladium 78 Paltinum 78 Pattinum	64 Cu Copper 108 Ag Ag Silver 47 H97 H97 Au Gold	Cadmium 20 Cadmium 48 Cadmium 48 Mercury 80	70 Ga 31 115 In 116 204 71 Thailum	73 Germanium 32 119 Sn Tin 50 Lead 82	75 Asenic 33 Asenic 33 Asenic 55 51 209 Bismuth 83	79 Selentum 34 128 Tellurum 52 Potontum 84 Potontum 84	80 Brownine 35 127 127 I I S3 At Astatine	Krypton 36 Krypton 36 Xee Xeen 54 Xeen 88 Radon 86	16
Francium Radium Actin Actin	Radium 88 anthano 4ctinoid X	Francium Radium Actinium 88	nic mass bol nic) number	140 Ce Centum 58 The VC	Ce Ce Pr DynamPr Nd S9 ProtactiniumPm NeptuniumSm S9 S1150 Sm 	Nedoymium 60 238 U Uranium 92 One mole	Pm Promethium 61 Np Neptunium 93 Of any ga	Sm Samarium 62 Pu Plutonium 94 Plutonium 38 is 24 dn	Europium 63 Americium 95	Gd Gadolinium 64 Curium 96 Tremperz	TD TD Terbium 65 Bk Berkellum 97 atture and	162 Dy Dysprosium 66 Californium 98 pressure	Ho Holmium 67 ES Ensteinium 99 (r.t.p.).	167 Erbium 68 Fermium 100	Tm Trulium 69 Md Mendelevium 101	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Luterium 771 Luterium 771 Lawrencium 103	173 175 175 175 175 176 176 176 176 176 177 171 171 172 173

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).