www.PanaCambridge.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the June 2005 question paper

0620 CHEMISTRY

0620/03

Paper 3 (Extended Theory), maximum mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

www.PapaCambridge.com

Grade thresholds for Syllabus 0620 (Chemistry) in the June 2005 examination.

	maximum	minimum mark required for grade:				
	mark available	А	С	E	F	
Component 3	80	58	30	16	11	

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

www.PapaCambridge.com

June 2005

IGCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/03

CHEMISTRY Extended Theory

				IGO	SE – JU	NE 2005		0620	8	8
1	(a)		chlorine	actual colou yellow, yello orange, bro black grey,	ow/greer wn, brov					a Cambrio
			gas, <u>liqui</u> all three r							[1]
			colourles: gas	s or (pale) ye	ellow					[1] [1]
	(b)	Must	t have a d	correct reage	nt other	wise wc =	0			
		yello	w or orar	water or bubl nge or browr r grey crystal	1	lorine gas				[1] [1]
				ur that is darl		for bromid	e)			[1]
		off w yello	hite or pa w <u>precipi</u>	<u>tate</u> insoluble	cream <u>r</u> e in aque	orecipitate eous amm	or soluble in a onia ubility in aque		onia	[1] [1] [1]
		pale	yellow o	nitrate(aq) r off white or <u>tate</u> insoluble	_		onia			[1] [1] [1]
			-			•	s, iron(III) salt nanganate(VII			
	(c)		3C <i>l</i> ₂ = naving eit	$2IC\mathit{l}_3$ ther reactants	s or prod	ducts corre	ect ONLY [1]			[2]
	(d)	chlor CON		M _r or lower o	lensity o	o r lighter m	olecules or mo	olecules move	e faster	[1] [2]
		OR	smalle	or based on or with no add total of [3] n	ditional c		r sieve idea [0]		
									TOTA	AL = 12
2	(a)			′n ²⁺ + 2I ⁻ :her reactant:	s or prod	ducts corre	ect ONLY [1]			[2]
	(b)			odium hydro xcess (only i		white pred tate mention	•			[1] [1]
		Mark		rst (sodium l	•	•	ults ous ammonia the other has	•	•	[1] then an

Mark Scheme

Syllabus

Page 1

	Pag	e 2	Mark Scheme Syllabus	
	ı ug		IGCSE – JUNE 2005 0620	
	(c)	(i)	zinc <u>and</u> a reason Do not mark conseq to iodine in excess	a Cambrida
		(ii)	final mass of zinc bigger or the level section higher or less zinc used up gradient less steep or longer time or falls more slowly	[1]
		(iii)	steeper gradient same loss of mass of zinc	[1] [1]
			тот	AL = 10
3	(a)	(i)	CH_3 - CH == CH_2	[1]
		(ii)	conseq to (i) correct repeat unit COND evidence of continuation	[1] [1]
		(iii)	monomer COND because it has a double bond or unsaturated or alkene NOT addition	[1] [1]
	(b)	(i)	to remove fibres or remove solid NOT precipitate, NOT impurities, NOT to obtain a filtrate	[1]
		(ii)	because silver atoms have <u>lost electrons</u> OR oxidation number increased	[1]
		(iii)	silver chloride	[1]
	(c)	(i)	name of an ester formula of an ester if they do not correspond MAX [1] Accept name - terylene for formula ester linkage and continuation If a 'fat' complete structure must be correct e.g. C ₁₇ H ₃₅ etc. Mark for formula only - [1]	[1] [1]
		(ii)	alcohol or alkanol NOT a named alcohol	[1]
	(d)	(i)	acid loses a proton base accepts a proton	[2] [1]
			OR same explanation but acid loses a hydrogen <u>ion</u> (1) and base gains hydrogen <u>ion</u> (1)	
		(ii)	only partially ionised or poor hydrogen ion donor or poor proton donor NOT does not form many hydrogen ions in water or low concentration of hydrogen ions NOT pH	[1] ogen

			32					
	Pag	e 3	Mark Scheme	Syllabus 0620	1 2			
<u> </u>			IGCSE – JUNE 2005	U02U	200			
4	(a)	(i)	correct word equation (carbon dioxide and water) Accept correct symbol equation		VA. Papacambrie			
		(ii)	Must have a correct reagent otherwise wc = 0 add (acidified) barium chloride(aq) or nitrate or add bar COND white precipitate NOT lead(II) compounds		[1] [1]			
		(iii)	low pH or universal indicator turns red(aq) pH 3 or less		[1]			
	(b)	(i)	$H_2S + 2O_2 = H_2SO_4$ unbalanced [1]		[2]			
		(ii)	unpleasant smell or it is poisonous or when burnt for dioxide or forms sulphuric acid NOT it is a pollutant	ms acid rain	or forms sulphur [1]			
		(iii)	2H to 1S COND 8e around sulphur atom 2e per hydrogen atom THREE correct TWO from above [1] lonic structure = [0]		[2]			
	(c)	(i)	vanadium oxide or vanadium(V) oxide or vanadium per Must be correct oxidation state if one given	ntoxide or V ₂ 0	O ₅ [1]			
		(ii)	400 to 500° C		[1]			
		(iii)	add to (concentrated) sulphuric acid NOT dilute COND (upon sulphuric acid) above then add water		[1] [1]			
	(d)	mol mol	as of one mole of $CaSO_4 = 136$ es of $CaSO_4$ in 79.1g = 0.58 accept 0.6 es of H_2O in 20.9 g = 1.16 accept 1.2 seq x = 2 x given as an integer		[1] [1] [1]			
					TOTAL = 16			
5	(a)	(i)	A is glutamic acid B is alanine Accept names only, NOT R_f values		[1] [1]			
		(ii)	because acids are colourless or to make them visible or to show positions of the samples or distance travelle	ed	[1]			
		(iii)	compare with known acids or reference samples or sta Accept from colours of samples	ndards	[1]			

[1] [1]

[1]

(iv) amide linkage

continuation

COND different monomers

Accept hydrocarbon part of chain as boxes If nylon 6 then only one monomer [1] **NOT** different monomers

· ug		IGCSE – JUNE 2005	0620	8
(b)	corr	rect structure as syllabus (box representation) rect linkageO tinuation		Spac ambrid
(c)		$C_6H_{12}O_6 = 2C_2H_5OH + 2CO_2$ not balanced [1] Accept C_2H_6O		[2]
	(ii)	gives out <u>energy</u> or equivalent NOT heat N.B. a total of [1] not [2]		[1]
	(iii)	glucose used up or yeast 'killed' by ethanol NOT yeast used up NOT reactant to	used up	[1]
	(iv)	oxidise alcohol to acid or to ethanoic acid or to carbon dioxide and water or if oxygen present aerobic respiration or cannot have anaerobic respiration in presence of NOT it is anaerobic respiration, must be additional content.		[1]
	(v)	fractional distillation		[1]
				TOTAL = 15
6 (a)	(i)	bauxite		[1]
	(ii)	to reduce melting point or improve conductivity or as a solvent or reduce the working temperature		[1]
	(iii)	carbon dioxide or monoxide or fluorine		[1]
(b)	(i)	aluminium		[1]
	(ii)	solution goes colourless or copper formed or a <u>brown solid</u> forms or blue colour disappears or bubbles NOT goes clear or copper formed		[1]
	(iii)	covered with an oxide layer		[1]
(c)	rea rea	ction no reaction reaction		[1] [1]
(d)	(i)	$2Al(OH)_3 = Al_2O_3 + 3H_2O$ Not balanced [1]		[2]
	(ii)	Aluminium nitrate = aluminium oxide + nitrogen dio only TWO correct products [1]	xide + oxygen	[2]
				TOTAL = 12

Mark Scheme

Page 4

Syllabus