UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the October/November 2005 question paper

0620 CHEMISTRY

0620/03

Paper 3 (Extended Theory), maximum mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

CIE is publishing the mark schemes for the October/November 2005 guestion papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Paç	ge 1	Mark Scheme	Syllabus
	IGCS	IGCSE – OCTOBER/NOVEMBER 2005	0620
uesti	on 1		ann
a)(i)	lattice		
(ii)	high melting point or high fixed points poor conductor as solid good conductor as liquid, accept either aqueous or molten hard soluble in water Any TWO		[
(b)(i)	Mg ²⁺		[
(ii)	N ³⁻		ſ
(iii)	Mg_3N_2		ſ
(iv)	opposite charges Do NOT accept "attr accept <u>electrostatic</u>	act" it is in the question attraction as a phrase	[
			TOTAL =
Questi	on 2		
(a)(i)	boiling		ſ
(ii)	lower temperature o over temperature ra	r nge or no plateau	ſ
(iii)	direct continuation o	f E to F	[
(iv)	close or touching	far apart fast and random	[
	cannot move apart	can move apart	Ĺ
(b)(i)	calcium ethanoate + hydrogen		[
(ii)	zinc oxide or hydroxide		ſ
(c)	CH₃COOH + NaOH reactants [1] p	⇔ CH₃COONa + H₂O roducts [1]	ſ
			TOTAL = 1

ы.

Pag	ge 2	Mark Scheme	Syllabus
		IGCSE – OCTOBER/NOVEMBER 2005 0620	0620
Questi	on 3		anny
a)(i)	because concentration of BiC <i>l</i> ₃ decreases bismuth chloride used up ONLY [1]		372
(ii)	products are being formed or concentration of products increases. Concentration mark given either (i) or (ii)		[1]
(iii)	reaction has come to equilibrium rates equal or no change in concentration		[1] [1]
(iv)	equilibrium to left or favours backward reaction or equilibrium moves to use up hydrochloric acid BiOC <i>l</i> used up or BiC <i>l</i> ₃ formed		[1] [1]
(b)(i)	No ch both s	ange in volume or same number of moles on ides	[1]
(ii)	move Increa	to right se in pressure favour side with smaller volume or	[1]
	tends	to reduce pressure	[1]
			TOTAL = 10
Questi	on 4		
(a)(i)	genera same physic same comm any T	al molecular formula functional group cal properties show trend — bp increase with n chemical properties on methods of preparation WO	[2]
(ii)	C ₈ H ₁₇ (if form	OH Mass of one mole = 130 (g) ula correct but mass wrong [1]	[2]
(b)	propa corres name	n-1-ol or propan-2-ol ponding structural formula and formula must correspond for [2] if not ONLY [1]	[1] [1]
(c)(i)	structu	ural formula of isomer	[1]
(ii)	carboı pentei pentai	n dioxide <u>and</u> water ne noic acid	[1] [1] [1]
			TOTAL = 10

			4242	
Page 3		Mark Scheme	Syllabus	
		IGCSE – OCTOBER/NOVEMBER 2005	0620	
Questi	on 5		an,	
(a)(i)	38p 38p 30p	38e 50n 38e 52n 28e 35n	oridge.co.	
(ii)	Same	number of protons and different number of neutrons	[1]	
(iii)	8+2		[1]	
(b)(i)	<u>heat</u> zinc blende in <u>air</u> to form oxide reduce <u>oxide</u> with <u>carbon</u>		[1] [1]	
(ii)	galvanising sacrificial protection alloys batteries roofing Any ONE [1]			
(c)(i)	hydro	chloric acid	[1]	
(ii)	$Sr^{2+} + 2e = Sr$ $2CT - 2e = Cl_2$ or $2CT = Cl_2 + 2e$		[1] [1]	
(iii)	hydrogen [1] and strontium hydroxide [1]		[2]	
(d)(i)	zinc + water = zinc oxide + hydrogen heat [1] steam [1]		[1] [2]	
(ii)	Sr + 2H ₂ O = Sr(OH) ₂ + H ₂ Not balanced [1] cold water		[2] [1] TOTAL = 19	
Questi	on 6			
(a)(i)	moles mass mass	of NiCO₃ reacted = 0.08 of nickel carbonate reacted = 9.52 g of nickel carbonate unreacted = 2.48 g	[1] [1] [1]	
(ii)	maximum number of moles of hydrated salt = 0.08 maximum mass of salt = 0.08 x 281 = 22.48 g percentage yield 10.4/22.48 x 100 = 46.3%		[1] [1] [1]	
(b)(i)	sulphuric acid COND description of titration repeat without indicator or with carbon evaporation any TWO		[3]	
(::)		ve	[2]	
(11)	filter [wash	Dupon correct reagents 1] and dry precipitate [1]		
	OR A	ccept synthesis		
	fluorir burn (ne [1] or heat [1]	[3]	

		4	Share .
Page 4		Mark Scheme Syllabus	.0
		IGCSE – OCTOBER/NOVEMBER 2005 0620	202
Questi	ion 7		Canne
(a)	from and v	methane [1] vater [1]	idde co
	OR e suital	lectrolysis [1] ble electrolyte [1]	13
	OR a crack	lkane [1] ing [1]	[2]
(b)(i)	iron		[1]
(ii)	lower beca	temperature moves equilibrium to right use forward reaction is exothermic	[1] [1]
(c)(i)	H—⊢ endo endo exoth	thermic thermic ermic	[1] [1] [1]
(ii)	More –232	heat given out than taken in [1] 8 + 945 + 1308 = –75(kJ) [1]	
	OR M Must	lore heat given out bond forming than taken in bond breaking [2] mention bond breaking and forming	[2]

TOTAL = 10