UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY

Paper 3 (Extended)

0620/03

October/November 2005

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials required.

Candidate Name		
Centre	Candidate	
Centre Number	Number	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

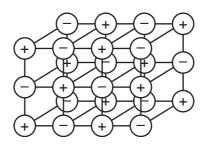
WRITE IN THE BOXES PROVIDED ON THE QUESTION PAPER

DO NOT WRITE IN THE BARCODE.

DO NOT WRITE IN THE GREY AREAS BETWEEN THE PAGES.

Do not use staples, paper clips, highlighters, glue or correction fluid.

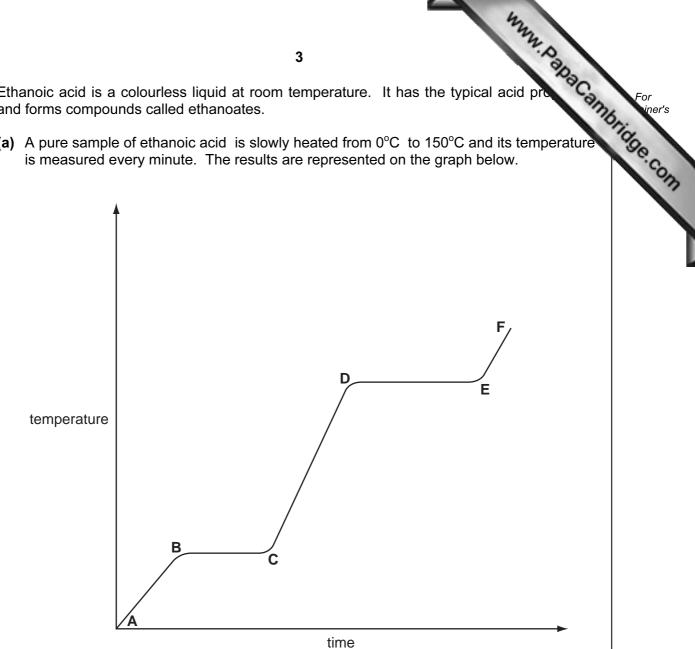
You may use a calculator.


Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed on page 16.

For Examin	er's Use
1	
2	
3	
4	
5	
6	
7	
Total	


www.PapaCambridge.com (a) The structure of a typical ionic compound is a regular arrangement of position negative ions. 1

	(i)	What is the name of this regular arrangement of particles?	
			[1]
	(ii)	Give two physical properties of ionic compounds.	
			[2]
(b)		s are formed by electron loss or gain. The electron distribution of a magnesi m is 2 + 8 + 2 and of a nitrogen atom is 2 + 5.	um
	(i)	Give the formula of the magnesium ion.	
			[1]
	(ii)	Give the formula of the nitride ion.	
			[1]
	(iii)	What is the formula of the ionic compound, magnesium nitride?	
			[1]
	(iv)	In this compound there is an ionic bond. Why are the two ions attracted to earther?	ach
			[1]

Ethanoic acid is a colourless liquid at room temperature. It has the typical acid pro 2 and forms compounds called ethanoates.

(a) A pure sample of ethanoic acid is slowly heated from 0°C to 150°C and its temperature is measured every minute. The results are represented on the graph below.

(i) Name the change that occurs in the region **D** to **E**.

[1]

(ii) What would be the difference in the region B to C if an impure sample had been used?

(iii) Sketch on the graph how the line would continue if the acid was heated to a higher temperature. [1]

iv) Complete the following to molecules in regions C to	4 able that compares the sep D with those in E to F .	paration and movement	PC Annual For ine
	C to D	E to F	3e.c
separation (distance between particles)			
movement of particles	random and slow		
		••••••	
Can particles move apart to fill any volume?			

		[5]
(b)	Complete the word equations for the reactions of ethanoic acid.	
	calcium + ethanoic acid →	
	+	
	+ ethanoic acid → zinc ethanoate + water	[2]
(c)	Write the symbol equation for the reaction between ethanoic acid and sodi hydroxide.	um
		[2]

- Reversible reactions can come to equilibrium. They have both a forward and a ba 3 reaction.
- www.PapaCambridge.com (a) When water is added to an acidic solution of bismuth(III) chloride, a white precipitate forms and the mixture slowly goes cloudy.

(i)	Explain why the rate of the forward reaction decreases with time.	
		 [2]
		[4]
(ii)	Why does the rate of the backward reaction increase with time?	
		. [1]
		ניו
(iii)	After some time why does the appearance of the mixture remain unchanged?	
		[2]
		(-)
(iv)	When a few drops of concentrated hydrochloric acid are added to the clo mixture, it changes to a colourless solution. Suggest an explanation.	udy
		[2]

reaction 1	$N_2(g) + O_2(g)$	\rightleftharpoons	2NO(g)
reaction 2	2NO(g) + O ₂ (g)	\rightleftharpoons	2NO ₂ (g)

	the the tenth of t	
	6	
Bot	th of the following reactions are reversible.	For iner's
	reaction 1 $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$	ide
	reaction 2 $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$	COM
(i)	Suggest a reason why an increase in pressure does not affect the position of equilibrium for reaction 1.	
	[1]	_
(ii)	What effect would an increase in pressure have on the position of equilibrium for reaction 2? Give a reason for your answer.	
	[2]	

The alcohols form a homologous series. The first member is methanol and the 4 butanol.

$$\begin{array}{ccc} \mathsf{CH_3}\!-\!\mathsf{OH} & & \mathsf{CH_3}\!-\!\mathsf{CH_2}\!-\!\mathsf{CH_2}\!-\!\mathsf{OH} \\ \mathsf{methanol} & \mathsf{butanol} \end{array}$$

			2	
			7 AM. Pak	1
	alc anol.		The first member is methanol and the it	Camb
		CH ₃ — OH methanol	7 The first member is methanol and the its CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH butanol	
(a)	(i)	Give two general characteristics of	of a homologous series.	
				[2]
	(ii)	Calculate the mass of one mole of	f the C ₈ alcohol.	
				[2]
				ا ا
(b)	Giv	e the name and structural formula o	of the third member of this series.	
	nar	ne		[1]

[1]

(c) The structural formula of the fifth member, pentan-1-ol, is drawn below.

$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - OH$$

(i) Draw the structural formula of an isomer of this alcohol.

structural formula

(ii)	Predict	the names of the product(s) formed when pentan-1-ol	Ca
	•	reacts with an excess of oxygen,	1
		and	[1]
	•	is dehydrated to form an alkene,	
			[1]
	•	is oxidised by acidified potassium dichromate(VI).	
			[1]

F	or		
٠	Nin	er	's

5 Strontium and zinc are both metals with a valency of 2. Strontium is more reactive that Its chemistry is similar to that of calcium.

www.PapaCambridge.com

(a) (i) Complete the following table that shows the number of protons, electrons and neutrons in each particle.

particle	protons	electrons	neutrons
⁸⁸ Sr			
⁹⁰ Sr			
⁶⁵ Zn ²⁺			

									[3]
(ii)	Explain	why ⁸⁸ Sr	and ⁹⁰ Sr	are isoto	pes.				
									 [1]
(iii)	Comple	te the ele	ctron dist	tribution	of an ato	m of s	trontium.		
	2	+	8	+	18	+		+	 [1]
(b) Th	e major o	re of zinc	is zinc bl	lende, Zr	nS.				
(i)	Describ	e how zin	ıc is extra	cted fror	n zinc bl	ende.			
						•••••			
									 [2]
(ii)	Give a ι	use of zin	C.						
									[4]

		Why.	
		10	
(c)		trolysis of its molten chloride. Name the reagent that will react with the carbonate to form the chloride. [1]	Ab.
	(i)	Name the reagent that will react with the carbonate to form the chloride.	1de
		[1]	
	(ii)	The electrolysis of molten strontium chloride produces strontium metal and chlorine. Write ionic equations for the reactions at the electrodes.	
		negative electrode (cathode)	
		positive electrode (anode) [2]	
	(iii)	One of the products of the electrolysis of concentrated aqueous strontium chloride is chlorine. Name the other two.	
		[2]	
(d)	Bot	h metals react with water.	
	(i)	Write a word equation for the reaction of zinc and water and state the reaction conditions.	
		word equation [1]	
		conditions [2]	
	(ii)	Write an equation for the reaction of strontium with water and give the reaction condition.	
		equation [2]	
		condition [1]	

6 (a) The following method is used to make crystals of hydrated nickel sulphate.

An excess of nickel carbonate, 12.0 g, was added to 40 cm³ of sulphuric acid, 2 mol/dm³. The unreacted nickel carbonate was filtered off and the filtrate evaporated to obtain the crystals.

$$NiCO_3 + H_2SO_4 \longrightarrow NiSO_4 + CO_2 + H_2O$$

 $NiSO_4 + 7H_2O \longrightarrow NiSO_4.7H_2O$

Mass of one mole of NiSO₄.7H₂O = 281 g Mass of one mole of NiCO₃ = 119 g

(i) Calculate the mass of unreacted nickel carbonate.

Number of moles of H_2SO_4 in 40 cm³ of 2.0 mol/dm³ acid = 0.08

Number of moles of NiCO₃ reacted =

Mass of nickel carbonate reacted = g

Mass of unreacted nickel carbonate = _____ g [3]

(ii) The experiment produced 10.4 g of hydrated nickel sulphate. Calculate the percentage yield.

The maximum number of moles of NiSO₄.7H₂O that could be formed =

The maximum mass of NiSO₄.7H₂O that could be formed = g

The percentage yield = ______% [3]

- **(b)** In the above method, a soluble salt was prepared by neutralising an acid with an insoluble base. Other salts have to be made by different methods.
 - (i) Give a brief description of how the soluble salt, rubidium sulphate could be made from the soluble base, rubidium hydroxide.

[3]

(ii)	Suggest a method of making the insoluble salt, calcium fluoride.	Can
		[3]

	-01
•	iner's
	1101 3
A.	

www.PapaCambridge.com In 1909, Haber discovered that nitrogen and hydrogen would react to form ammon 7 yield of ammonia was 8%.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ the forward reaction is exothermic

> catalyst platinum temperature 600 °C

		pressure 200	alli		
(a)	Des	scribe how hydrogen is obt	ained for the moder	n process.	
	•••••				[2]
(b)	(i)	What is the catalyst in the	modern process?		
					[1]
	(ii)	Explain why the modern yield of 15%.	process, which use	es a lower temperature, has a hig	her
					[2]
(c)	(i)	Complete the following ta reaction between nitroger		the bond breaking and forming in rm ammonia.	the
		bonds	energy change /kJ	exothermic or endothermic	
	1 1	mole of $N \equiv N$.045		
	br	oken	+945		
		moles of	+1308		
		moles of N – H med	-2328		
					[3]
	(ii)	Explain, using the above	data, why the forwar	rd reaction is exothermic.	
					[2]

BLANK PAGE

www.PapaCambridge.com

15

BLANK PAGE

www.PapaCambridge.com

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

The Periodic Table of the Elements DATA SHEET

								G	Group									
_	=											≡	>	>			0	
							T Hydrogen										4 He Helium	
7 Lithium	9 Be							1				11 Boron	12 Carbon 6	14 N itrogen 7	16 Oxygen 8	19 Fluorine	20 Neon 10	
23 Na Sodium	24 Mg Magnesium	T										27 A1 Aluminium 13	28 Si Silicon	31 Phosphorus	32 Sulphur 16	35.5 C1 Chlorine	40 Ar Argon	
39 X Potassium	40 Ca Calcium	Scandium 21	48 T Titanium	51 Vanadium	52 Chromium 24	Manganese 25	56 Fe Iron	59 Cobalt	59 Nickel	64 Copper 29	65 Zn zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 As Arsenic	79 Se Selenium 34	80 Br Bromine 35	84 Kry Krypton 36	
Rb Rubidium	88 Sr Strontium	89 ×	2r Zirconium 40	93 Niobium 41	96 Molybdenum 42	Tc Technetium 43	Ruthenium 44	103 Rh Rhodium	Pd Palladium	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium	Sn Iin	122 Sb Antimony 51	128 Te Tellurium	127 I lodine 53	131 Xe Xenon 54	16
Caesium 5	137 Ba Barium 56	139 La Lanthanum s	178 # Hafnium 72	181 Ta Tantalum	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium 77	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury	204 T (Thallium 81	207 Pb Lead	209 Bismuth 83	Po Polonium 84	At Astatine 85	Rn Radon 86	
Fr Francium	226 Ra Radium 88	227 Ac Actinium 89																•
38-71 L	38-71 Lanthanoid series 10-103 Actinoid series	d series series		140 Ce Cerium 58	141 Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	Yb Ytterbium 70	Lu Lutetium	
ey ey	ه × ۵	 a = relative atomic mass X = atomic symbol b = proton (atomic) number 	nic mass bol nic) number	232 Th Thorium 90	Pa Protactinium 91	238 U Uranium 92	Neptunium 93	Pu Plutonium 94	Am Americium 95	Curium 96	BK Berkelium 97	Cf Californium 98	ES Einsteinium 99	Fm Fermium 100	Md Mendelevium 101	Nobelium 102	Lr Lawrencium 103	mm.
				The	volume of	f one mole	The volume of one mole of any gas is 24	as is 24 d	m³ at rool	dm ³ at room temperature and pressure (r.t.p.).	ature and	pressure	(r.t.p.).			S. COM	andridge	Dana Cambridge.com
																,		

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).