Centre Number Candidate Number Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.PapaCambridge.com **CHEMISTRY** 0620/02

Paper 2

May/June 2006

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

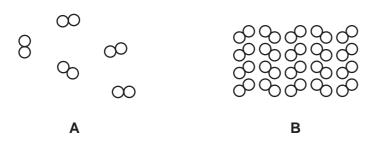
READ THESE INSTRUCTIONS FIRST

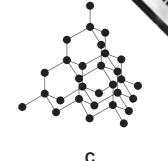
Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.


A copy of the Periodic Table is printed on page 16.


At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

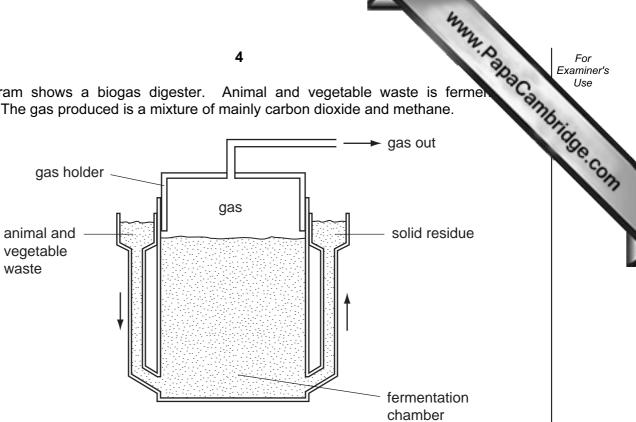
For Examiner's Use				
1				
2				
3				
4				
5				
6				
Total				

1 The diagram shows models of various elements.

(c) Which two of the models A to E represent gases?

Ε

(a) Define the	term element.
----------------	---------------


•••••
[1]

- (b) Which one of the models A to E represents a solid containing diatomic molecules?
- _____ and _____[1]
- (d) (i) Which one of the models A to E represents diamond?
 - [1]
 - (ii) State the name of the element present in diamond.
 - (iii) State a use of diamond other than in jewellery.
 - [1]

(e)	Struct		State three phys	sical p	roperties which are characte	rish
						[3]
(f)	Metals	s are sometimes m	ixed with other el	ements	s in order to change their prop	perties.
	(i) V	/hat is the name giv	ven to a mixture o	of meta	ils with other elements?	
						[1]
		latch up the metals ne has been done t		the le	ft with their uses on the right	. The first
		tin			for making chemical plants	
		mild steel			for plating tin cans	
		stainless stee	el		for car bodies	
		aluminium			for electrical wiring in houses	
		copper			for aircraft bodies	

[1]

The diagram shows a biogas digester. Animal and vegetable waste is fermel bacteria. The gas produced is a mixture of mainly carbon dioxide and methane. 2

			<u> </u>			fermenta chamber	tion	
(a)		te the name give duce carbon dio	en to the energy-r xide.	eleasing pro	cess in whic	ch organisms	use food a	and
								[1]
(b)	The	hydrogen react	roduced during the ts with the carbon equation for this re	dioxide to fo		e and oxygen.		
			CO ₂ + 2H ₂ -		+			[2]
	(ii)	Suggest a use	for the methane p	roduced in th	nis reaction.			[4]
								[1]
	(iii)	Describe the ar	rrangement and n	notion of the I	nolecules ir	n methane ga	s.	
		arrangement						
		motion						[2]
	(iv)	State the name	of the homologo	us series to v	vhich metha	ne belongs.		
								[1]
	(v)	Which one of t methane? Tick one box.	he following comp	oounds belor	gs to the sa	ame homolog	ous series	as
		C_2H_4	C_2H_6	CH ₃ Ol	-l C	H ₃ CO ₂ H		

(c) Which one of the following equations A, B, C or D describes fermentation?

A
$$CH_4 + H_2O \longrightarrow CO + 3H_2$$

B
$$C_6H_{12}O_6 + 6O_2 \longrightarrow 6H_2O + 6CO_2$$

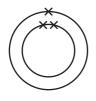
$$C C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$$

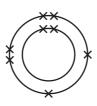
[1]	1

- (d) Many of the reactions occurring in the biogas digester are catalysed by enzymes.
 - (i) Suggest where the enzymes come from.

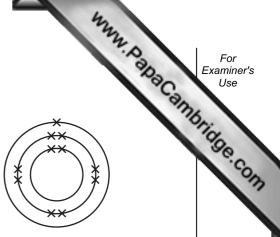
F./	4.7	
1	1	1
		1

(ii) Define the term catalysis.

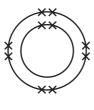

[1
_	


(e) The solid residue from the biogas digester can be used as a fertiliser. State the names of **two** non-metallic elements found in fertilisers which are needed for plant growth.

and	[2]


[1]

3 The electronic structures of various atoms are shown below.




В

C

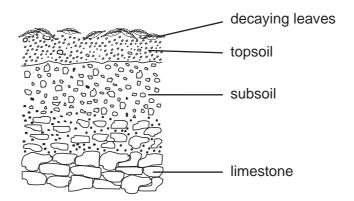
D

Ε

(a)	(i)	Which one of these structures A to E represents a noble gas?	
			[1]
	(ii)	Which two of these structures represent atoms from the same Group of Periodic Table?	the
		andand	[1]
	(iii)	Which one of these structures represents an atom with an atomic number of 8?	
			[1]
	(iv)	Which one of these structures forms a stable ion by gaining one electron?	
			[1]

(v) Which one of these structures is in Period 3 of the Periodic Table?

						42	
				7		N. D.	1
(b)	Com	plete the follow	ving sentences usir	ng words from	n the list.	13	Can
		chlorine	diamond	high	low	sharing weak	13
		sodium	strong	ı	transfer	weak	
	Cova	alent bonds are	e formed by the		of pairs of e	electrons. Simple	
	cova	alent molecules	such as	a	and bromine have	e	
	melti	ing points. Gia	ant covalent structu	res such as		have many	
		boı	nds and have high ı	melting point	S.		[5]
(c)	The	simplest coval	ent molecule is hyd	rogen.			
	(i)	Draw a diagrar	n to show how the	electrons are	e arranged in a h	ydrogen molecule	е.
	(ii)	Describe a tes	t for hydrogen.				[1]
		test					
		result					[2]


4 Coal gas is made by heating coal in the absence of air. The table shows the composition of coal gas.

name of gas	% of gas in coal gas
hydrogen	50
methane	30
carbon monoxide	7
carbon dioxide	4
nitrogen	4
ethene	3
oxygen	2

(a)	(i)	Which element in this table is a highly flammable gas?	
			[1]
	(ii)	Which compound in the table is an alkene?	
			[1]
	(iii)	Which compound in the table turns limewater milky?	
			[1]
(b)	De	scribe a test you can use to distinguish between ethene and methane.	
	tes	t	
	res	ult with ethene	
	res	ult with methane	[3]

		and	Examiner's Use
(c)	Mo	lecules of ethene can react with each other to make poly(ethene).	DA.
	(i)	What is the name given to this type of reaction?	Drice
			Examiner's Use
			OH
	(ii)	Which formula below best represents a molecule of poly(ethene)? Tick one box.	
-	 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n
			[1]
(d)	usi	nene can be manufactured by breaking down hydrocarbons into smaller molecuing high temperatures and a catalyst. ate the name given to this type of reaction.	
(e)		quid is also formed when coal is heated in the absence of air. s liquid contains a high percentage of ammonia.	[1]
	(i)	Describe a test for ammonia.	
	(')		
		test	
		result	[2]
	(ii)	Ammonia has the formula NH ₃ . Calculate the relative molecular mass of ammonia.	
			[1]
(f)		al contains a small amount of sulphur. plain why burning coal is harmful to the environment.	
			[2]

5 The diagram shows a cross section of a soil.

(a) A student took 10 g of topsoil and shook it with 200 cm³ of distilled water.

(i)	How can the student separate the solids in the soil from the solution?

(ii) The topsoil had a pH of 6.
Which of the following gives the best description of this pH?
Tick **one** box.

strongly acidic	
weakly acidic	
neutral	
weakly alkaline	

[1]

[1]

(b) ⁻	The	soil con	tained large ar	mounts of calcium	ions and carbonate ions.	no from
	(i)	Use the	information in	the diagram to su	ggest where these ions car	ne from.
						[1]
(ii)	Comple acid.	te the word eq	uation for the read	ction of calcium carbonate v	
cal carb	lciu on:		hydrochlorid acid	calci		+
						[2]
(c) ⁻	The	table sh	ows the mass	of each ion prese	nt in 200 cm³ of soil solution).
			ion	formula of ion	mass present/milligrams	
			calcium	Ca ²⁺	12	
			carbonate	CO ₃ ²⁻	20	
			iron(III)	Fe ³⁺	4	
			magnesium	Mg ²⁺	5	
			nitrate	NO ₃	2	
			phosphate	PO ₄ ³⁻	1	
			others		6	
	(i)	Which n	negative ion ha	s the highest cond	entration in the soil solution	<u>-</u> 1?
(ii)	Calculat			e litre (1000 cm³) of solution	
(i	ii)		on in the tabl de and alumini		monia when heated with a	[1] aqueous sodium
						[1]
(i	v)		e a test for iro			
		test				
		result				[3]

www.PapaCambridge.com (d) The air trapped in the soil has a different composition from the air in the atmosph The table shows the composition of the air in the soil.

gas	percentage of gas in soil air
carbon dioxide	2
nitrogen	82
oxygen	15
other gases	1

State how the composition of soil air compares with the composition of air in the atmosphere.

carbon dioxide	
nitrogen	
oxygen	[3]

(e) Decaying leaves produce ethanoic acid. Complete the formula for ethanoic acid showing all atoms and bonds.

Iron is extracted from iron ore by heating the iron ore with coke and limestone.	Use
(a) State the name of the ore from which iron is extracted.	Milit
	Cannbhidde Com
(b) The coke burns in a blast of hot air to form carbon monoxide.	13
(i) Complete the equation for this reaction.	
C + O ₂ CO	_
	[1]
(ii) State an adverse effect of carbon monoxide on human health if it were to esc from the blast furnace.	cape
	[1]
(c) Near the top of the blast furnace, carbon monoxide reacts with iron ore.	
$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$	
(i) Write a word equation for this reaction.	
	[4]
	[1]
(ii) What type of chemical reaction is the conversion of Fe ₂ O ₃ to 2Fe?	
	[1]

(d)	The limestone	is	converted t	to	calcium	oxide	and	carbon	dioxide	by t	he	intense
	the furnace.											

						m.	
				14		4	Day
(d)		e limestone is cor furnace.	nverted to calcium o	oxide and car	bon diox	kide by the intens	Papa Camb
			CaCO₃ —	CaO +	CO ₂		
	(i)	What type of che	emical reaction is th	nis?			
	(ii)	Name a use of li	imestone other thar	n in the blast f	urnace.		
							[1]
	(iii)	The product of t furnace. What is	de reacts with silica this reaction collect s the name of this p d the correct answe	s on top of the roduct?			m of the
		baux	xite sand	slag	slake	ed lime	
							[1]
(e)	The	e iron obtained fro	om the blast furnace	contains the	following	g impurities.	
		carbon	manganese	phospho	rus	silicon	
	(i)	Which one of the	ese elements is a tr	ansition elem	ent?		
							[1]
	(ii)	What type of oxi	de is phosphorus o	xide?			

[1]

(iii) 50 tonnes of impure cast iron from the blast furnace contains 47 tonnes of iron. Calculate the percentage of the impurities in the cast iron.

basic

neutral

amphoteric

acidic

15

BLANK PAGE

www.PapaCambridge.com

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

DATA SHEET
The Periodic Table of the Elements

									Г
	0	4 He lium 2	20 Neon 10	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon	Radon 86		
	II/		19 Fluorine	_ _	80 Br Bromine 35	127 I lodine 53	At Astatine 85		
	N		16 Oxygen	32 Sulphur 16	79 Selenium 34	128 Te Tellurium	Po Polonium 84		
	^		14 N itrogen 7	31 Phosphorus	AS As Arsenic	122 Sb Antimony	209 Bi Bismuth		
	<u>N</u>		12 Carbon 6	28 Si icon	73 Ge Germanium	Sn Tin	207 Pb Lead 82		
	Ш		11 Boron 5	27 A1 Aluminium	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium		
						Cd Cadmium 48	201 Hg Mercury 80		
					64 Copper 29	108 Ag Silver	197 Au Gold		
Group					59 X Nickel	106 Pd Palladium 46	195 Pt Platinum 78		
Gro					59 Co Cobalt	103 Rh Rhodium	192 Ir Iridium		
		T Hydrogen			.56 T.e. Iron	Ruthenium	190 Os Osmium 76		
					Mn Manganese		186 Re Rhenium 75		
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W W Tungsten 74		
					51 V Vanadium 23	93 Nobium	181 Ta Tantalum		
					48 Ti Titanium	91 Zr Zirconium 40	178 Hf Hafnium		_
					Scandium	89 ×	139 La Lanthanum	227 AC Actinium 89	
			9 Be Beryllium	24 Magnesium	40 Ca Calcium	Sr Strontium 38	137 Ba Barium 56	226 Ra Radium 88	
	_		7 L ithium	23 Na Sodium	39 K Potassium	85 Rb Rubidium	133 CS Caesium 55	Fr Francium 87	

*58-71 Lanthanoid series 190-103 Actinoid series

b = proton (atomic) number a = relative atomic mass X = atomic symbol Key

167 169 173 175 Er Tm Yb Lu	L 69	Fm Md No Lr Ferrium Mendelevium Nobelium Lawing		de
165 Ho	Holmium 67	ES Einsteinium	(r.t.p.).	
162 Dy	Dysprosium 66	Cf Californium	The volume of one mole of any gas is 24 dm 3 at room temperature and pressure (r.t.p.).	
159 Tb	Terbium 65	BK Berkelium 97	ature and	
157 Gd	Gadolinium 64	Cm Curium	n tempera	
152 Eu	Europium 63	Am Americium	n³ at roor	
150 Sm	Samarium 62	Pu Plutonium	18 is 24 dr	
Pm	Promethium 61	Np Neptunium	of any ga	
	Neodymium 60	238 U Uranium	one mole	
141 Pr	Praseodymium 59	Pa Protactinium 91	olume of c	
140 Ce	Cerium 58	232 Th Thorium		

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).