		- A BAR
		GE INTERNATIONAL EXAMINATIONS Certificate of Secondary Education
	CHEMISTRY	
	Paper 3 (Extended)	0620/03
		October/November 2006
	Candidates answer on the Question No Additional Materials required.	1 hour 15 minutes Paper.
Candidate Name		
Centre Number		Candidate Number
READ THE	SE INSTRUCTIONS FIRST	

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen in the spaces provided on the Question Paper.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN THE BARCODE.

DO **NOT** WRITE IN THE GREY AREAS BETWEEN THE PAGES.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed on page 16.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
Total	

man

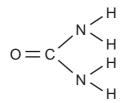
This document consists of **14** printed pages and **2** blank pages.

Choose a gas from the following list to answer the questions below. Each gas may be once, more than once or not at all. 1

					474	
			2		N.Day	
		the following ce or not at al		uestions below. Each	gas may b chlorine	Can
	ammonia	argon	carbon dioxide	carbon monoxide	chlorine	
	ethene	hydrogen	nitrogen	oxygen		
	Which gas					
(i)	is a noble g	gas,				
(ii)	is an acidio	c oxide,				
(:::)		mariaad				
(iii)	can be poly	ymensea,				
(iv)	is the activ	e component	of air,			
(v)	is used in t	he treatment	of water,			
(vi)	is a produc	t of respiratio	n?			
						[6]

[6]

	le shows the meltin ces A to F .	3 g points, boiling poi	nts and electrical pro	electrical conductor of
substance	melting point / °C	boiling point / °C	electrical conductor at room temperature	electrical conductor of substance dissolved in water
Α	961	2193	good	does not dissolve
В	113	444	does not conduct	does not dissolve
С	0	100	very poor	very poor
D	803	1465	does not conduct	good
E	–5 to -10	102 to 105	good	good
F	-85	-60	does not conduct	does not dissolve


(i)	Which three substances are solids at room temperature?	
		[1]
(ii)	Which one is an ionic compound?	
		[1]
(iii)	Which one is a gas at room temperature?	
		[1]
(iv)	Which two substances are liquids at room temperature?	
		[1]
(v)	Which substance is a metal?	
		[1]
(vi)	Which one is an impure substance?	
		[1]

			4
3	Cal	carbonate is an important raw material.	
	(a)	Nar	4 carbonate is an important raw material. ne a rock which is made up of calcium carbonate.
			[1]
	(b)	Wh	en calcium carbonate is heated strongly, it decomposes. CaCO ₃ \rightarrow CaO + CO ₂
		(i)	Calculate the relative formula mass of:
			CaCO ₃
			CaO [2]
		(ii)	7.00 kg of calcium oxide was formed. What mass of calcium carbonate was heated?
			[2]
	(c)	Cal	cium carbonate is used to control soil acidity.
		(i)	Why is it important to control soil acidity?
			[1]
		(ii)	Both calcium carbonate, insoluble in water, and calcium oxide, slightly soluble, are used to increase soil pH. Suggest two advantages of using calcium carbonate.
			[2]
		(iii)	Give one use of calcium carbonate other than for making calcium oxide and controlling soil pH.
			[1]

[2] Low sulphur fuels are being introduced. Ordinary diesel contains 500 ppm of sulphur but low sulphur diesel contains less than 50 ppm. Why is this an advantage to the environment? [2] Catalytic converters reduce pollution from motor vehicles, as shown in the following liagram. xides of nitrogen arbon monoxide arbon monoxide catalysts rhodium, platinum, palladium i) What type of elements are the metals rhodium, platinum and palladium?			4734 H
i) Explain why it is dangerous to use a gas fire in a poorly ventilated room. [2] Low sulphur fuels are being introduced. Ordinary diesel contains 500 ppm of sulphur ut low sulphur diesel contains less than 50 ppm. Why is this an advantage to the environment? [2] Catalytic converters reduce pollution from motor vehicles, as shown in the following liagram. xides of nitrogen arbon monoxide nburnt hydrocarbons i) What type of elements are the metals rhodium, platinum and palladium? (1] i) Rhodium catalyses the decomposition of the oxides of nitrogen. $2NO \rightarrow N_2 + O_2$ Two other pollutants are carbon monoxide and unburnt hydrocarbons. How are they made into less harmful substances? (2)			5
i) Explain why it is dangerous to use a gas fire in a poorly ventilated room. [2] Low sulphur fuels are being introduced. Ordinary diesel contains 500 ppm of sulphur ui low sulphur diesel contains less than 50 ppm. Why is this an advantage to the environment? [2] Catalytic converters reduce pollution from motor vehicles, as shown in the following liagram. xides of nitrogen arbon monoxide nburnt hydrocarbons i) What type of elements are the metals rhodium, platinum and palladium? (1] i) Rhodium catalyses the decomposition of the oxides of nitrogen. $2NO \rightarrow N_2 + O_2$ Two other pollutants are carbon monoxide and unburnt hydrocarbons. How are they made into less harmful substances? (2)	Mini	misi	ng air pollution is essential for health and for the environment.
i) Explain why it is dangerous to use a gas fire in a poorly ventilated room. [2] Low sulphur fuels are being introduced. Ordinary diesel contains 500 ppm of sulphur ut low sulphur diesel contains less than 50 ppm. Why is this an advantage to the environment? [2] Catalytic converters reduce pollution from motor vehicles, as shown in the following liagram. xides of nitrogen arbon monoxide nburnt hydrocarbons i) What type of elements are the metals rhodium, platinum and palladium? (1] i) Rhodium catalyses the decomposition of the oxides of nitrogen. $2NO \rightarrow N_2 + O_2$ Two other pollutants are carbon monoxide and unburnt hydrocarbons. How are they made into less harmful substances? (2)	(a)	Nat	ural gas is methane.
i) Explain why it is dangerous to use a gas fire in a poorly ventilated room. [2] Low sulphur fuels are being introduced. Ordinary diesel contains 500 ppm of sulphur ut low sulphur diesel contains less than 50 ppm. Why is this an advantage to the environment? [2] Catalytic converters reduce pollution from motor vehicles, as shown in the following liagram. xides of nitrogen arbon monoxide nburnt hydrocarbons i) What type of elements are the metals rhodium, platinum and palladium? (1] i) Rhodium catalyses the decomposition of the oxides of nitrogen. $2NO \rightarrow N_2 + O_2$ Two other pollutants are carbon monoxide and unburnt hydrocarbons. How are they made into less harmful substances? (2)		(i)	Write the equation for complete combustion of methane.
[2] Low sulphur fuels are being introduced. Ordinary diesel contains 500 ppm of sulphur put low sulphur diesel contains less than 50 ppm. Why is this an advantage to the mirronment? [2] Catalytic converters reduce pollution from motor vehicles, as shown in the following liagram. xides of nitrogen arbon monoxide \rightarrow \qquad			[2]
Low sulphur fuels are being introduced. Ordinary diesel contains 500 ppm of sulphur put low sulphur diesel contains less than 50 ppm. Why is this an advantage to the environment? [2] Catalytic converters reduce pollution from motor vehicles, as shown in the following liagram. xides of nitrogen arbon monoxide \rightarrow \downarrow \downarrow less harmful gases to atmosphere catalysts rhodium, platinum, palladium i) What type of elements are the metals rhodium, platinum and palladium? [1] i) Rhodium catalyses the decomposition of the oxides of nitrogen. $2NO \rightarrow N_2 + O_2$ Two other pollutants are carbon monoxide and unburnt hydrocarbons. How are they made into less harmful substances?	((ii)	Explain why it is dangerous to use a gas fire in a poorly ventilated room.
Low sulphur fuels are being introduced. Ordinary diesel contains 500 ppm of sulphur put low sulphur diesel contains less than 50 ppm. Why is this an advantage to the environment? [2] Catalytic converters reduce pollution from motor vehicles, as shown in the following liagram. xides of nitrogen arbon monoxide \rightarrow \downarrow \downarrow less harmful gases to atmosphere to atmosphere catalysts rhodium, platinum, palladium i) What type of elements are the metals rhodium, platinum and palladium? [1] i) Rhodium catalyses the decomposition of the oxides of nitrogen. $2NO \rightarrow N_2 + O_2$ Two other pollutants are carbon monoxide and unburnt hydrocarbons. How are they made into less harmful substances?			
but low sulphur diesel contains less than 50 ppm. Why is this an advantage to the minimum of th			[2]
Catalytic converters reduce pollution from motor vehicles, as shown in the following liagram. xides of nitrogen \longrightarrow \longrightarrow less harmful gases to atmosphere \longrightarrow catalysts rhodium, platinum, palladium i) What type of elements are the metals rhodium, platinum and palladium? 		but	low sulphur diesel contains less than 50 ppm. Why is this an advantage to the
Catalytic converters reduce pollution from motor vehicles, as shown in the following liagram. xides of nitrogen \longrightarrow \longrightarrow less harmful gases to atmosphere to atmosphere to atmosphere to atmosphere for atalysts rhodium, platinum, palladium i) What type of elements are the metals rhodium, platinum and palladium? 			
tiagram. xides of nitrogen arbon monoxide \rightarrow \rightarrow less harmful gases to atmosphere catalysts rhodium, platinum, palladium i) What type of elements are the metals rhodium, platinum and palladium? [1] i) Rhodium catalyses the decomposition of the oxides of nitrogen. $2NO \rightarrow N_2 + O_2$ Two other pollutants are carbon monoxide and unburnt hydrocarbons. How are they made into less harmful substances? 			[2]
arbon monoxide \longrightarrow to atmosphere nburnt hydrocarbons \longrightarrow to atmosphere catalysts rhodium, platinum, palladium i) What type of elements are the metals rhodium, platinum and palladium? 			
platinum, palladium i) What type of elements are the metals rhodium, platinum and palladium? [1] i) Rhodium catalyses the decomposition of the oxides of nitrogen. $2NO \rightarrow N_2 + O_2$ Two other pollutants are carbon monoxide and unburnt hydrocarbons. How are they made into less harmful substances? [2]	(carb	on monoxide
i) Rhodium catalyses the decomposition of the oxides of nitrogen. $2NO \rightarrow N_2 + O_2$ Two other pollutants are carbon monoxide and unburnt hydrocarbons. How are they made into less harmful substances?			•
i) Rhodium catalyses the decomposition of the oxides of nitrogen. $2NO \rightarrow N_2 + O_2$ Two other pollutants are carbon monoxide and unburnt hydrocarbons. How are they made into less harmful substances?		(i)	What type of elements are the metals rhodium, platinum and palladium?
$2NO \rightarrow N_2 + O_2$ Two other pollutants are carbon monoxide and unburnt hydrocarbons. How are they made into less harmful substances?			[1]
Two other pollutants are carbon monoxide and unburnt hydrocarbons. How are they made into less harmful substances?	((ii)	Rhodium catalyses the decomposition of the oxides of nitrogen.
they made into less harmful substances?			$2NO \rightarrow N_2 + O_2$
[2]			
[2]			
			[2]

	42	
	6 W. B	
Ammo	onia is manufactured by the Haber Process.	Car
	$\label{eq:relation} \begin{array}{c} & & & \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
The fo	orward reaction is exothermic.	
(a) (i	What is the catalyst for this reaction?	
(ii	Newer catalysts have been discovered for this process. Using these catalysts, operating temperature is lowered from 450°C to 400°C. What is the advantage using a lower temperature? Explain your answer.	
	advantage	
	explanation	
		[2]
th	fter passing over the catalyst, the mixture contains 15% of ammonia. It is cooled a e ammonia liquefies and is separated from the unreacted nitrogen and hydrog ney are recycled.	
(i) How are the gases recycled?	
		[1]
(ii) Only ammonia gas liquefies. Suggest an explanation for this.	
		[1]
	rea, $CO(NH_2)_2$, is one of the fertilisers manufactured from ammonia. mmonia is heated with carbon dioxide.	
(i) Write an equation for the manufacture of urea.	
		[2]
(ii) Explain why urea on its own might not be very effective in promoting crop growth	۱.
		[1]

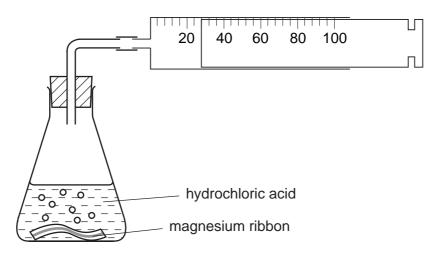
www.papacambridge.com (d) Give a diagram showing the arrangement of the valency electrons in one mole the covalent compound urea. Its structural formula is given below.

Use o to represent an electron from a carbon atom. Use x to represent an electron from a hydrogen atom. Use • to represent an electron from a nitrogen atom.

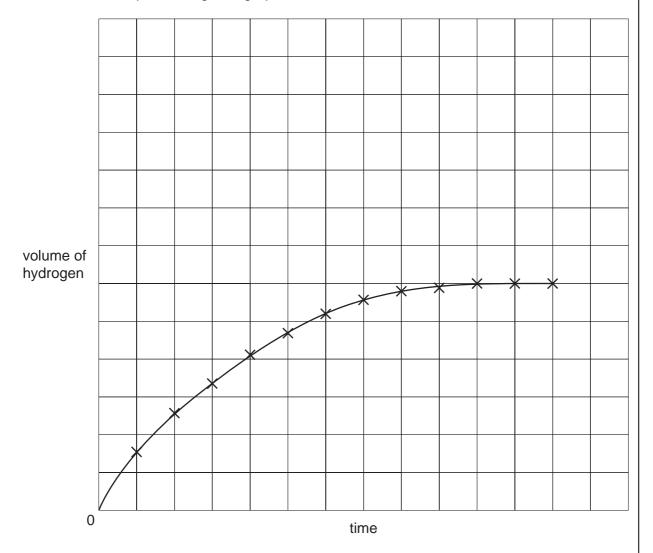
[3]

- An ore of copper is the mineral, chalcopyrite. This is a mixed sulphide of iron and con 6
- www.papaCambridge.com (a) Analysis of a sample of this ore shows that 13.80 g of the ore contained 4.80 g copper, 4.20 g of iron and the rest sulphur. Complete the table and calculate the empirical formula of chalcopyrite.

copper iron sulphur composition by mass/g 4.80 4.20 number of moles of atoms simplest mole ratio of atoms

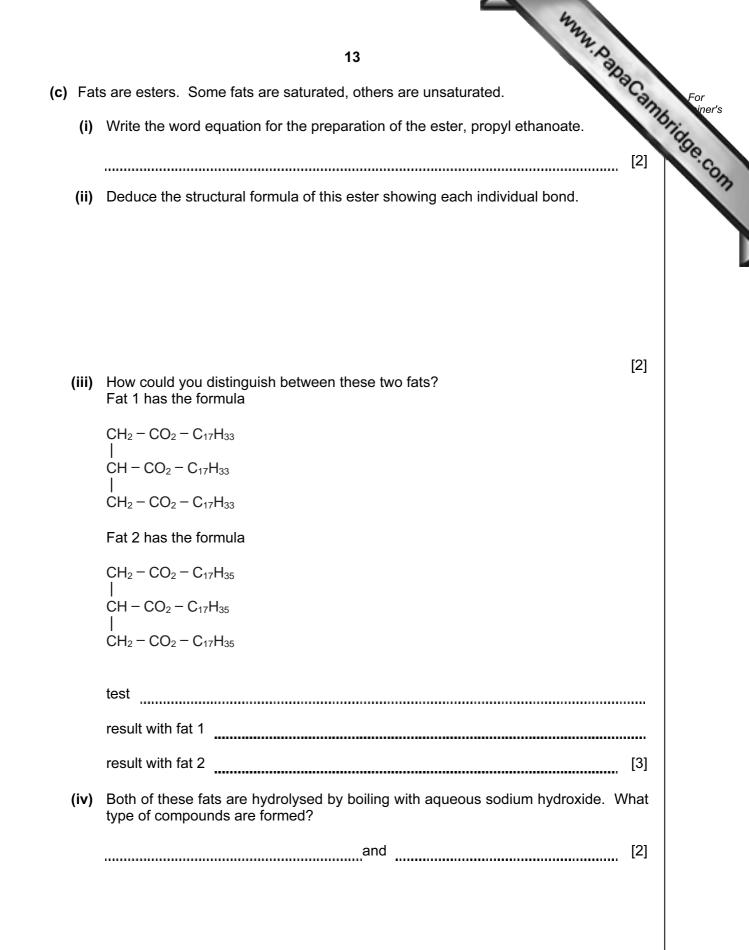

[3] The empirical formula is [1] (b) Impure copper is extracted from the ore. This copper is refined by electrolysis. (i) Name; the material used for the positive electrode (anode), the material used for the negative electrode (cathode), a suitable electrolyte. [3] (ii) Write an ionic equation for the reaction at the negative electrode. [1] (iii) One use of this pure copper is electrical conductors, another is to make alloys. Name the metal that is alloyed with copper to make brass. [1]

www.papacambridge.com (c) Two of the elements in chalcopyrite are the metal, copper, and the non-metal, These have different properties. Copper is an excellent conductor of electricity and malleable. Sulphur is a poor conductor and is not malleable, it is brittle. Explain, terms of their structures, why this is so.


difference in electrical conductivity

..... [2] difference in malleability [2]

- 7 The rate of a reaction depends on concentration of reactants, temperature and poly catalyst or light.
- www.papacambridge.com (a) A piece of magnesium ribbon was added to 100 cm³ of 1.0 mol/dm³ hydrochloric acid. The hydrogen evolved was collected in a gas syringe and its volume measured every 30 seconds.



In all the experiments mentioned in this question, the acid was in excess. The results were plotted to give a graph.

www.papacambridge.com 11 (i) The experiment was repeated. Two pieces of magnesium ribbon were a 100 cm³ of 1.0 mol/dm³ hydrochloric acid. Sketch this graph on the same grid label it X. (ii) The experiment was repeated using one piece of magnesium ribbon and 100 cm³ of 1.0 mol/dm³ ethanoic acid. Describe how the **shape** of this graph would differ from the one given on the grid. [2] (b) Reaction rate increases when concentration or temperature is increased. Using the idea of reacting particles, explain why; increasing concentration increases reaction rate, [2] increasing temperature increases reaction rate. [2] (c) The rate of a photochemical reaction is affected by light. A reaction, in plants, between carbon dioxide and water is photochemical. (i) Name the **two** products of this reaction. [2] (ii) This reaction will only occur in the presence of light and another chemical. Name this chemical. [1]

12	
The three types of food are carbohydrates, proteins and fats.	Can
12 the three types of food are carbohydrates, proteins and fats. a) Aqueous starch is hydrolysed to maltose by the enzyme amylase. The formula of maltose is: HO O - OH	10
НО — О — ОН	ľ
Starch is hydrolysed by dilute sulphuric acid to glucose.	
но – Он	
(i) What is an enzyme?	
(ii) Draw the structure of starch.	[1]
	[1]
(iii) Name the technique that would show that the products of these two hydrolyses different.	are
	[1]
o) Proteins have the same linkage as nylon but there is more than one monomer in macromolecule.	the
(i) Draw the structure of a protein.	
	[2]
(ii) What class of compound is formed by the hydrolysis of proteins?	
(ii) What class of compound is formed by the hydrolysis of proteins?	[2]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

DATA SHEET The Periodic Table of the Elements

						~				www	DabaCambridge.com
					1	6	_	_			aba
	0	4 Helium 2	20 Neon 10	40 Ar 18	84 Krypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103	Cambric
	١١		19 Fluorine	35.5 C1 17	80 Br Bromine 35	127 I fodine 53	At Astatine 85		173 Yb 70	Nobelium 102	SBE.COM
	>		16 Oxygen 8	32 S Sulphur 16	79 Selenium 34	128 Te Tellurium 52	Polonium 84		169 Thulium 69	Md Mendelevium 101	
	>		14 Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83		167 Er Erbium 68	Fermium 100	
	2		12 Carbon 6	28 Si 14	73 Ge Germanium 32	119 Sn 50	207 207 Lead 82		165 Holmium 67	Einsteinium 99	(r.t.p.).
	≡		5 Boron	27 A1 Auminium 13	70 Ga 31	115 In Indium 49	204 T 1 Thallium 81		162 Dysprosium 66	Californium 98	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
					65 Zn 30	112 Cadmium 48	201 Hg Mercury 80		159 Tb 65	BK Berkelium 97	ature and
					64 Cu ^{Copper}	108 Ag Silver	197 Au Gold 79		157 Gd Gadolinium 64	Ocurium Ocuriu	m temper
Group					59 Nickel 28	106 Palladium 46	195 Pt Platinum 78		152 Eu ^{Europium} 63	Americium 95	m³ at roo
Gr					59 CO 27	103 Rh odium 45	192 Ir Iridium 77		150 Sm Samarium 62	Plutonium 94	as is 24 d
		Hydrogen			56 Fe Iron	101 Ru Ruthenium 44	190 Os Osmium 76		Promethium 61	Neptunium 93	e of any g
					55 Manganese 25	Technetium 43	186 Re Rhenium 75		144 Neodymium 60	238 Uranium 92	one mole
					52 Cr Chromium 24	96 Molybdenum 42	184 Tungsten 74		141 Praseodymium 59	Protactinium 91	olume of
					51 V Vanadium 23	93 Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Thorium 90	The v
					48 Titanium 22	91 Zrconium 40	178 Hafnium 72		1	mic mass Ibol nic) number	
					45 SC Scandium 21	89 Yttrium 39	139 La Lanthanum 57 *	227 Actinium 89 ↑	d series series	a = relative atomic mass X = atomic symbol b = proton (atomic) number	
	=		9 Be Beryllium 4	24 Mg Magnesium 12	40 Calcium 20	88 Strontium 38	137 Baa 56	226 Rad 88	*58-71 Lanthanoid series 190-103 Actinoid series	ش × ش ×	
	-		7 Lithium 3	23 Na Sodium	39 K Potassium 19	85 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 L †90-103	ه ۲	