www.PanaCambridge.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2007 question paper

0620 CHEMISTRY

0620/03

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

				32
	Page 2	2		abus
			IGCSE – May/June 2007 00	620
An 1		•	tten symbol, e.g. NA or CL, should be penalised once in the or coke or peat	paper.
	(, (-,		wood or charcoal	, se
	(ii)		ral gas or methane or propane or butane or petroleum gaery gas	ases or calor gas or [1]
	(b) (i)	para dies avia fuel heav	tion fuel or jet fuel	
		Any	TWO a named alkane e.g. octane	[2]
	(ii)		es or grease or lubricants or polishes or bitumen (tar, aspha TWO from the primary or secondary distillation of petroleum	,
	(iii)	(liqu	id) air or ethanol and water or alkenes (made by crackir	ng) or Noble Gases [1]
				[Total: 7]
2			ple e.g. sodium chloride rect formula	[1] [1]
			on(IV) oxide or sand or silicon oxide ner only TWO elements	[1]
	electror good	ns [1]	and positive ions [1]	[2] [1]

[Total: 6]

(i)	method C sulphuric acid (allow if given in equation) zinc oxide + sulphuric acid = zinc sulphate + water	[1] [1] [1]
(ii)	method A hydrochloric acid $KOH + HCI = KCI + H_2O$	[1] [1] [1]
(iii)	method B potassium iodide or any soluble iodide Pb ²⁺ + 2l ⁻ = Pbl ₂ accept a correct equation even if soluble iodide is wrong Not balanced - Pb ²⁺ + l ⁻ = Pbl ₂ ONLY [1]	[1] [1] [2]

3

[Total: 10]

				4	^
Page 3		1	Mark Scheme	Syllabus	er er
			IGCSE – May/June 2007	0620	Nac.
(a)	(i)	BaO		·	de
(a)	(')	Dao			O apa Cambridge
	(ii)	B ₂ O ₃	3		90
	` ,				9
		0			
(b)	(i)	S ²⁻			[1] `
		O = 3+	!		[4]
	(ii)	Ga ³ ⁴			[1]
(c)	NC	2			[1]
(-)		-	8e (1bp and 3nbp) around each chlorine		[1]
			8e (3bp and 1nbp) around nitrogen		[1]
(d)	(1)		re a correct chemical property in (i) adium harder		
			adium narder adium higher melting point or boiling point		
			adium higher density		
			'TWO		[2]
		OR (corresponding statements for potassium		
		NB ł	nas to be comparison		
	(ii)	pota pota pota vana	re a correct physical property in (ii) assium more reactive or example of different reactive assium reacts with cold water, vanadium does not. assium one oxidation state, vanadium more than one adium coloured compounds, potassium white or colo adium and its compounds catalysts, not potassium	9	
			TWO		[2]
		NB ł	nas to be comment about both elements		
/ 6\	/:\	fluor	ino gos		F41
(6)	(1)		ine gas tine solid		[1] [1]
		aota			[.]
	(ii)		have valency of one		
			can react with other elements to form halides		
			are oxidants		
			ny correct Chemistry – they both form acidic hydride i have diatomic molecules	28	
			accept one electron or form ion X		
			have seven valency electrons		
		both	react with non-metals to form covalent compounds		
			react with metals to form ionic compounds		
			form acidic oxides		
			「have a valency of 7 ′ TWO		[0]
		AIN I	1110		[2]
					[Total: 15]

[Total: 15]

	Page 4	Mark Scheme	Syllabus	· A er
		IGCSE – May/June 2007	0620	100
5	(a) (i) air v	vould react (with the magnesium or titanium)		Carry

(a) (i)	air would react (with the magnesium or titanium) OR argon would not react (with the metals) NOT argon is inert	Mor
	NOT argon is inert	3
(ii)	any metal higher than magnesium in reactivity series	[1]
(iii)	add water (to dissolve salt) filter or centrifuge	[1] [1]
(b) (i)	electron loss	[1]
(ii)	hydrogen	[1]
(iii)	oxygen chlorine	[1] [1]
(iv)	it cannot lose electrons (because) it receives electrons (from the battery)	[1] [1]
	OR reduction occurs at the cathode oxidation at the anode (not cathode)	[1] [1]
	OR electrons are "pushed" to rig preventing it from being oxidised	[1] [1]
	for comments of the type – rusting needs oxygen, it is formed on titanium not iron C	
	NOT the idea that titanium is more reactive etc	[1]
(v)	SET 1 sacrificial protection is a cell	

sacrificial protection is a cell does not need electricity cathodic protection is electrolysis cathodic protection needs electricity

SET 2

sacrificial protection needs a more reactive metal (in contact with iron or steel) this metal corrodes instead of steel cathodic protection needs an inert electrode accept unreactive or less reactive metal as

an electrode has to be **ONE** comment from each set [2]

all comments about oxide layers and coating are neutral

[Total: 12]

Page 5	Mark Scheme	Syllabus	1
	IGCSE – May/June 2007	0620	
		S.	

6 (a) alumina or aluminium oxide sodium aluminate iron(III) oxide filtration or centrifuge NOT conditional

(b) from left to right: carbon cathode or carbon negative electrode 900 to 1000°C aluminium cryolite

[1] [1] [1]

(c) (i) $Al^{3+} + 3e = Al$ not balanced [1] $A l^{3+}(aq) = 0$

[2]

[1]

(ii) oxygen is formed NOT oxide reacts with carbon anode

[1] [1]

(d) (i) low density or light or resistant to corrosion accept strength/weight ratio or alloys are strong strong on its own is neutral

[1]

(ii) not attacked or corroded or unreactive oxide layer easily shaped or malleable or ductile any TWO

[2]

(iii) for strength or so it does not break or does not sag or can have pylons further apart

[1]

NOT steel is a better conductor NOT aluminium protects steel from rusting

[Total: 16]

	J -		IGCSE – May/June 2007	0620	Apr.
(a)		anol numb	er needed but if one is given it has to be 1	·	StaCambridge
			ıl formula (all bonds shown) OH NOT –HO		3
	stru acc no	ept – conse	acid Il formula (all bonds shown) OH NOT –HO eq marking ds are not shown (CH ₃ –CH ₂ –), penalise once		[1] [1]
			(3 2 // 1		
(b)	(i)		t have correct ester linkage ND continuation and a group on either side of the es	ter group	[1] [1]
		Acce	ept -COO-		
	(ii)		ept any sensible suggestion es, clothing, bottles, packaging, bags		[1]
(c)	(i)	8			[1]
	(ii)	CON C ₂ H	ole bond becomes single and 4 bonds per carbon at ND a bromine atom on each carbon 4Br ₂ ONLY [1] ept a structural formula with hydrogen atoms	tom	[1] [1]
	(iii)	corn	oil		[1]
(d)		_	fat react with 86.2g of iodine fat react with 762 g of iodine		[1]

one mole of fat reacts with 762/254 moles of iodine molecules

consequential marking allowed provided the number of double bonds is an integer.

one mole of fat reacts with 3 moles of iodine molecules

number of double bonds in one molecule of fat is 3

Mark Scheme

Page 6

limit 762 x 2

7

Syllabus

[Total: 14]

[1]

[1]