

CENTRE

Paper 3 (Extended)

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Oldie Com

May/June 2007
1 hour 15 minutes

*	
6	
7	
0	
ū	
W	
6	
w	
W	
6	
_	

CHEMISTRY					062	20/03
NUMBER			NUMBER			

CANDIDATE

Candidates answer on the Question Paper.

No Additional Materials required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use						
1						
2						
3						
4						
5						
6						
7						
Total						

This document consists of 14 printed pages and 2 blank pages.

A majo	or source of energy is the combustion of fossil fuels.	Car
(a) (i)	Name a solid fossil fuel.	13
(ii)	Name a gaseous fossil fuel.	[1]
(b) Pe	etroleum is separated into more useful fractions by fractional distillation.	ניו
(i)	Name two liquid fuels obtained from petroleum.	
	and	[2]
(ii)	Name two other useful products obtained from petroleum that are not used fuels.	as
	and	[2]
(iii)	Give another mixture of liquids that is separated on an industrial scale by fractio distillation.	nal
		[1]

For iner's

[Total: 7]

2 Complete the following table.

following table.	3		MANN, PARACO	For
particles present	electrical conductivity of solid	electrical conductivity of liquid	example	No iners
positive and negative ions	poor			
atoms of two different elements in a giant covalent structure	poor	poor		
and	good		copper	
	particles present positive and negative ions atoms of two different elements in a giant covalent structure and	particles present electrical conductivity of solid positive and negative ions poor atoms of two different elements in a giant covalent structure poor and good	particles present electrical conductivity of solid conductivity of liquid positive and negative ions poor atoms of two different elements in a giant covalent structure good good good	particles present electrical conductivity of solid positive and negative ions poor atoms of two different elements in a giant covalent structure poor and good copper

[Total: 6]

- 3 There are three methods of preparing salts.
 - Method **A** use a burette and an indicator.
 - Method ${\bf B}$ mix two solutions and obtain the salt by precipitation.
 - Method **C** add an excess of base or a metal to a dilute acid and remove the excess by filtration.

For each of the following salt preparations, choose one of the methods **A**, **B** or **C**, name any additional reagent needed and then write or complete the equation.

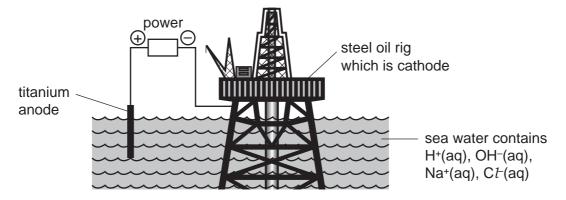
(i)	the soluble salt, z	inc sulphate, from the insoluble base, zinc oxide	
	method		
	reagent		
	word equation		[3]
(ii)	the soluble salt, p	otassium chloride, from the soluble base, potassium hydroxide	;
	method		
	reagent		
	equation	+ \rightarrow KC l + H ₂ O	[3]
(iii)	the insoluble salt	lead(II) iodide, from the soluble salt, lead(II) nitrate	
	method		
	reagent		
	equation Pb ²⁺ +	\rightarrow	[4]
		[Total:	10]

			42	
			5 eriodic table to help you answer these questions. of each of the following compounds.	
Use	e you	ur copy of the pe	eriodic table to help you answer these questions.	Car
(a)	Pre	dict the formula	of each of the following compounds.	7bn
	(1)			
	(i)	barium oxide		[1]
	(ii)	boron oxide		[1]
(b)	Giv	e the formula of	f the following ions.	
	(i)	sulphide		[1]
	(ii)	gallium		[1]
(c)			nowing the arrangement of the valency electrons in one molecule bund nitrogen trichloride.	e of
	Use	e x to represent	an electron from a nitrogen atom.	
		•	an electron from a chlorine atom.	[3]
(d)	Pot	assium and var	nadium are elements in Period IV.	
	(i)	State two diffe	erences in their physical properties.	
				[2]
	(ii)	Give two diffe	rences in their chemical properties.	
				[2]

(e)		uorine and astatine are halogens. Use your knowledge of the other halogedict the following:									
	(i)	The physical state of fluorine at r.t.p.									
		The physical state of astatine at r.t.p.	[2]								
	(ii)	Two similarities in their chemical properties									
			[2]								

[Total 15]

For viner's


(i)	Explain why it is necessary to use argon rather than air.	
		[1]
(ii)	Name another metal that would reduce titanium chloride to titanium.	

	[4]
	[I]

(111)	chloride.

.....

(b) Titanium is very resistant to corrosion. One of its uses is as an electrode in the cathodic protection of large steel structures from rusting.

` '						

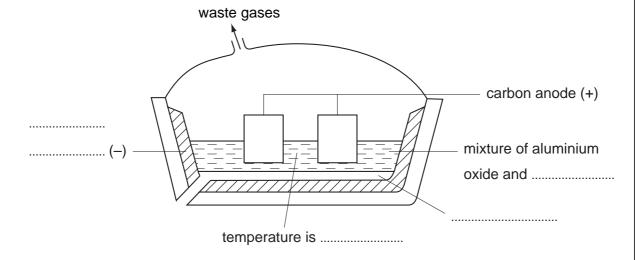
(i) Define oxidation in terms of electron transfer.

(ii)	The steel oil rig is the cathode. Name the gas formed at this electrode.	

(iii) Name the **two** gases formed at the titanium anode.

		and	 [2]
(iv)	Explain why the oil rig does not rust.		

[/


	May	
	8	
(v)	Another way of protecting steel from corrosion is sacrificial protection. Give two differences between sacrificial protection and cathodic protection.	For iner's
	[2]	G.COM
	[Total: 12]	

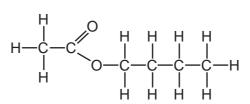
[4]

- Aluminium is extracted by the electrolysis of a molten mixture that contains alumina, 6 is aluminium oxide, Al_2O_3 .
- www.papaCambridge.com (a) The ore of aluminium is bauxite. This contains alumina, which is amphoteric, and iron(III) oxide, which is basic. The ore is heated with aqueous sodium hydroxide. Complete the following sentences.

The	dissolves to give a solution of	
The	does not dissolve and can be removed by	[4]

(b) Complete the labelling of the diagram.

(c) The ions that are involved in the electrolysis are Al^{3+} and O^{2-} .


(i)	Write an equation for the reaction at the cathode.	
-----	--	--

(ii) Explain how carbon dioxide is formed at the anode.

[2]

		20	2
(d)	Giv	e an explanation for each of the following.	6
	(i)	Aluminium is used extensively in the manufacture of aircraft.	1
			[1]
	(ii)	Aluminium is used to make food containers.	
			[2]
	(iii)	Aluminium electricity cables have a steel core.	
			[1]
		[Total:	161

- www.PapaCambridge.com Esters, fats and polyesters all contain the ester linkage.
- (a) The structural formula of an ester is given below.

Name two chemicals that could be used to make this ester and draw their structural formulae. Show all bonds.

	nar	nes			and		[2]
	stru	ctural	l formulae				
(b)	(i)	Draw	v the structura	al formula of a po	llyester such	as Terylene.	[2]
							[2]
	(ii)	Sugg	gest a use for	this polymer.			[1]

(c) Cooking products, fats and vegetable oils, are mixtures of saturated and unsat esters.

www.PapaCambridge.com The degree of unsaturation can be estimated by the following experiment. 4 drops of the oil are dissolved in 5 cm³ of ethanol. Dilute bromine water is added a drop at a time until the brown colour no longer disappears. Enough bromine has been added to the sample to react with all the double bonds.

cooking product	mass of saturated fat in 100 g of product/g	mass of unsaturated fat in 100 g of product/g	number of drops of bromine water
margarine	35	35	5
butter	45	28	4
corn oil	10	84	12
soya oil	15	70	10
lard	38	56	

(i) Complete the one blank space in the table. [1]

(ii) Complete the equation for bromine reacting with a double bond.

$$C=C$$
 + Br_2 \longrightarrow [2]

(iii) Using saturated fats in the diet is thought to be a major cause of heart disease. Which of the products is the least likely to cause heart disease?

[1]

www.PapaCambridge.com (d) A better way of measuring the degree of unsaturation is to find the iodine number unsaturated compound. This is the mass of iodine that reacts with all the double be in 100 g of the fat. Use the following information to calculate the number of double bonds in one molecule of the fat. Mass of one mole of the fat is 884 g. One mole of I_2 reacts with one mole C=CThe iodine number of the fat is 86.2g. Complete the following calculation. 100 g of fat reacts with 86.2 g of iodine. 884 g of fat reacts with _____ g of iodine. One mole of fat reacts with _____ moles of iodine molecules. Number of double bonds in one molecule of fat is ______ [3]

[Total:14]

BLANK PAGE

www.PapaCambridge.com

BLANK PAGE

www.PapaCambridge.com

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

DATA SHEET
The Periodic Table of the Elements

								Ď	Group								
_	=											=	≥	>	>	=	0
							- I										4 T
							Hydrogen 1										Helium 2
7	6											=	12	14	16	19	
=	Be											Δ	ပ	z	0	ш	Ne
Lithium 3	Beryllium 4											Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27	28	31	32	35.5	40
Na	Mg											Ν	S	۵		CI	Αľ
Sodium 11	Magnesium 12	E										Aluminium 13	Silicon 14	Phosphorus 15	Sulphur 16	Chlorine 17	Argon 18
39	40	45	48	51	52	55	56	59		64		70	73	75		80	84
¥	Ca	Sc	F	>	ပ်	Mn	Fe	ပိ		ာ ၁		Ga	g	As	Se	ā	ž
Potassium 19	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
85	88	88	91	93	96		101	103			112	115	119	122	128	127	131
Rb	Š	>	Zr	Q Q	Mo		Ru	R	Pd		පි	In	Sn	Sb	<u>e</u>	Ι	×
Rubidium 37	Strontium 38	n Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42		Ruthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137	139	178	181	184		190		195	197	201	204	207	209			
Cs	Ba		Ξ	Та	>	Re	s _O	ï	£		£	11	Pb	Ξ	Ъ	Ą	
Caesium 55	Barium 56	Lanthanum 57 *	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
	226	227															
Francium	Radium Radium	Actinium															
· · · · · · · · · · · · · · · · · · ·	9	- . - .	_	140	141	144		150	152	157	159	162	165	167	169	173	175
58-71 Le	anthant	58-71 Lanthanoid series		ပီ	Ą	PN	Pm	Sm	ш	g	2	2	운	ш	Ę	χ	3
190-103 Actinoid series	ACTINOIC	series		Cerium 58	Praseodymium 59	ž 09	Promethium 61	_	_	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	_	Lutetium 71
	a	a = relative atomic mass	nic mass	000					\neg							- 1	

b = proton (atomic) number a = relative atomic mass X = atomic symbol *58-71 Lanthanoid series 190-103 Actinoid series Key

	42	
	34	
		Share
Lutetium	Lr Lawrencium 103	andri
Yb Ytterbium 70	No Nobelium 102	Dana Cambridge Com
Tm Thulium 69	Md Mendelevium 101	
Er Erbium 68	Fm Fermium 100	
Ho Holmium 67	ES Einsteinium 99	(r.t.p.).
Dy Dysprosium 66	Cf Californium 98	pressure
Tb Terbium 65	BK Berkelium 97	ature and
Gd Gadolinium 64	Cm Curium 96	n tempera
Eu Europium 63	Am Americium 95	n³ at roon
Samarium 62	Pu Plutonium 94	s is 24 dn
Pm Promethium 61	Np Neptunium 93	of any ga
Neodymium 60	238 U Uranium 92	one mole
Pr Praseodymium 59	Pa Protactinium 91	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
Ce Cerium 58	Th Thorium	The vc
	-	

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).