UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the October/November 2007 question paper

0620 CHEMISTRY

0620/03

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		Mary Mary	
	Page 2	Mark Scheme Syllabus	er
		IGCSE – October/November 2007 0620	Pac.
1	crystallisatio fractional dis filtration	<u>ation</u> fractional distillation n stillation he candidate are selecting from a list, the above are the only accep	er bacannbridge.cc [1] otable [Total: 5]
2	(a) ²³ 11Na		[1]
	⁴⁰ ₁₈ Ar		[1]
	³¹ 15P ³⁻ [1] for charge and [1] for symbol etc.	[2]
2	ACCEP	[1] for charge and [1] for symbol etc. T +3 and –3 Dnly the above are to be awarded the mark	[2]
		B or ²³ ₁₁ Na or sodium	[1]
	or the s	they have the same proton number or the same number of protons ame atomic number	[1]
		e same number of electrons same number of electrons and protons	[Total: 8]
3	Accept a	ratio MgBr ₂ or Mg 2Br anywhere in space ula suggests covalency then [1] only for MgBr ₂	[1]
		charges Mg ²⁺ and Br [−]	[1]
	Do not be concerned about location of minus sign 8e around bromine NOTE do not require correct coding – just 7 and 1 coded differently NOTE ignore electrons around magnesium		[1]
	CO	tern or order or regular or repeat or alternate ND positive and negative <u>ions</u> or atoms or molecules or particles TE Accept a sketch that shows the above, that is particles arranged in a re y, e.g. any ionic compound such as sodium chloride	[1] [1] egular
	cha or b or g or 2	/ reason from the list: arges must balance based on valencies group II and group VII 2e in outer level and 7e in outer level magnesium loses 2 electrons and brom <u>ine</u> gains 1 electron (per atom)	[1]
	lost red	ucing or reduction or reductant e electrons or given or donated electrons or transferred (to bromine) uced ned or accepted electrons	[1] [1] [1] [1]
	0.1		[Total: 10]

	e 3	Mark Scheme	Syllabus Syllabus	
		IGCSE – October/November 2007	0620	
(a) (i		bleach for wood pulp or preserving food or sterilising or in wine making or as a refrigerant or in metallurgy or (liquid) sulphur dioxide is used in the petroleum industry or kill microbes(etc) or insecticide		Abridge
(ii		(react with) oxygen or air NOT burnt/burn in air/oxygen		
	`	450°C vanadium oxide catalyst (if oxidation state given has to If four conditions are given which include high pressure High pressure is incorrect MAX 10 atm.	<i>,</i> .	[1] [1]
(iii		ammonium sulphate or superphosphate or potassium sulphate or magnesium sulphate		[1]
(b) (i	(vaporisation or boiling or evaporation condensation or liquefaction NOTE order in which changes are given is not importan NOT liquid => gas => liquid	t	[1] [1]
(ii	i) 1	to get maximum yield of zinc or reduce all zinc oxide		[1]
,		NOTE the above mark is awarded for why add excess or right or to favours the products or removes CO ₂ from ex NOTE this mark is awarded for how does the addition yield of zinc NOTE Allow any coherent explanation <u>flexibly</u> based on EXAMPLES : moves equilibrium to right [1] because carbon dioxide re to get maximum yield of zinc [1] as equilibrium moves to NOT just to make CO from CO ₂	quilibrium of excess carbon give max the above ideas emoved [1]	[1]
(c) (i	i) 2	Zn ²⁺ + 2e = Zn		[1]
(ii	($4OH^{-} - 4e = O_2 + 2H_2O$ or $4OH^{-} = O_2 + 2H_2O + 4e$ or $2H_2O = 4H^{+} + O_2 + 4e$ or $2H_2O - 4e = 4H^{+} + O_2$ oxygen as product [1]		[2]
(iii	•	sulphuric acid NOTE there are no alternative answers to the above		[1]
rc	naki lect ells pofi		protection	
	oina	age		
		Duses		[2]

			the second	
	Page	4	Mark Scheme Syllabus	·
			IGCSE – October/November 2007 0620	
5	(a) (i)		ilibrium to left or many molecules and few ions or tially ionised or reverse reaction favoured	brid
	(ii)	me	Mark Scheme Syllabus IGCSE – October/November 2007 0620 ilibrium to left or many molecules and few ions or tially ionised or reverse reaction favoured or ter donates proton thylamine accepts a proton TE If hydrogen ion then ONLY [1] provided both are correct	e.com
	• •		n 12 more than 7	[1]
	ро	or pro	<u>concentration</u> of hydroxide ions or partially dissociated or oton acceptor or poor H ⁺ acceptor s a weak base	[1]
	(c) (i)	mei NO	$_{3}NH_{2} + HCl = CH_{3}NH_{3}Cl$ thylammonium chloride TE the equation must be as written, the equation with sulphuric acid has been en as guidance.	[1] [1]
	(ii)		wn precipitate CEPT orange or red/brown or brick red or brown/red	[1]
	(iii)	sod	ium hydroxide or any <u>named</u> strong base [Tota	[1] Il: 9]
6	(a) (i)	hea	ıt (energy)	[1]
	(ii)	exo	thermic	[1]
	(iii)		$H_5OH + 3O_2 = 2CO_2 + 3H_2O$ $CO_2 + H_2O$ ONLY [1]	[2]
	(iv)	stra bet	ting points correctly ight line ween –2640 and –2700kJ/mol TE minus sign needed	[1] [1] [1]
	(v)	san con sim	ieral (molecular) formula ne functional group secutive members differ by CH ₂ ilar chemical properties or react same way T a comment about physical properties	
			ΥΤ₩Ο	[2]
	(b)		₃ - СН(ОН)-СН ₃ Т С ₃ Н ₇ ОН	[1]
		pro NO acc acc	pan-2-ol "2" is needed TE the name and the formula must correspond for both marks ept full structural formula – all bonds shown correctly ept formulae of the ether T CH ₃ - CH(HO)-CH ₃	[1]

Page 5	Mark Scheme Syllabus	s Par er
	IGCSE – October/November 2007 0620	1º8C
(c) (i)	<u>cracking</u> heat (alkane) or (alkane) and catalyst NOTE thermal cracking or catalytic cracking [2] alkane = alkene + hydrogen ANY TWO	www.papacambriog
	OR steam reforming[2] $CH_4 + H_2O = CO + 3H_2$ [1] or water/steam[1]catalyst or heat[1]	
(ii)	combustion or burning incomplete or insufficient oxygen/air OR ACCEPT steam reforming as above [2]	[1] [1]
(iii)	high pressure COND forward reaction volume decrease or volume of reactants greater than that of products	[1]
	 or fewer moles of gas on the right or fewer gas molecules on right NOTE accept correct arguments about either reactants or products 	[1]
(d) (i)	methyl ethanoate	[1]
(ii)	propanoic acid or propanal	[1]
(iii)	ethene	[1] [Total: 20]
(a) (i)	lower <u>concentration</u> ACCEPT without reference to experiment 2 but higher concentration must be referred to expt 1	[1]
	COND fewer collisions or lower rate of collision	[1]
(ii)	powdered so <u>larger surface area</u> COND so more collisions or higher rate of collisions	[1] [1]
(iii)	higher temperature particles move faster or more particles have enough energy to react or have more energy	
	or more particles have Ea COND collide more frequently	[1]
	or more particles have energy to react or more collisions result in a reaction	[1]

s a er	Syllabus	Mark Scheme	Page 6
1020	0620	IGCSE – October/November 2007	
www.papacambios		origin	b) (i)
· 10p.		lient decreases until = 0	~ ()
2		efore has to be a curve	
		a of one male of $C_2 C_2 = 100$	(::)
[1]		s of one mole of $CaCO_3 = 100$ ber of moles of $CaCO_3 = 0.3/100 = 0.003$	(11)
[1]		$es of HCl = 5/1000 \times 1 = 0.005$	
[1]		jent in excess is $CaCO_3$	
		rom above	
		Id need 0.006 moles of HC1	
[1]		ydrochloric acid only reacts with 0.0025 moles of C	
	tio	E this mark needs to show recognition of the 1:2 ra	
	(ii)	k ecf to (ii), that is from moles of limiting reagent in	(iii)
[1]	()	es of $CO_2 = 0.005 \times 0.5 \times 24 = 0.06 \text{ dm}^3$	()
		cm ³ unless numerically correct. 60 cm ³	
		re other units	
	ii) and (iii)	E If both number of moles integers then no ecf for	
[Total: 13]			