

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/02
Paper 2		Oct	ober/November 2007
			1 hour 15 minutes
Candidates an	swer on the Question Paper.		

READ THESE INSTRUCTIONS FIRST

No Additional Materials are required.

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the periodic table is printed on page 16.

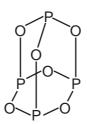
At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of 16 printed pages.

1 Some oxides are listed below.

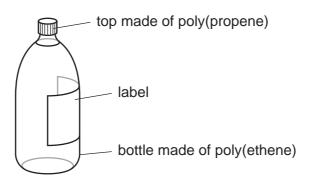

calcium oxide
carbon dioxide
carbon monoxide
phosphorus trioxide
sodium oxide
sulphur dioxide
water

(a)	Which one of these oxides is most likely to contribute to acid rain?	
		[1]
(b)	Which one of these oxides is a product of the reaction between an acid and a carbonate?	[41]
		[1]
(c)	Which one of these oxides is formed by the incomplete combustion of carbon?	
		[1]
(d)	Which one of these oxides is a good solvent?	
		[1]
(e)	Which one of these oxides is used to neutralise acidic industrial waste products?	
		[1]
(f)	Which two of these oxides reacts with water to form an alkaline solution?	
		[1]
(g)	Complete the diagram to show the electronic structure of water. show hydrogen electrons by 'o' show oxygen electrons by 'x'	

 $\underset{\times}{\times}\overset{O}{\times}$

H H

(h) The structure of phosphorus trioxide is shown below.


Write the **simplest** formula for phosphorus trioxide.

[1]

[Total: 8]

2 The diagram shows a bottle of mineral water.

alkanes

(a) The poly(propene) top is made by polymerising propene molecules, CH₃CH=CH₂.

monomers

result with unsaturated hydrocarbon

(i) Which one of the following best describes the propene molecules in this reaction? Put a ring around the correct answer.

polymers

products

......

salts

[3]

(iii) State the name of the homologous series to which propene belongs.

[1]

(iii) Propene is an unsaturated hydrocarbon. State the meaning of the following terms.

unsaturated

hydrocarbon

[2]

(iv) Describe a chemical test to distinguish between an unsaturated hydrocarbon and a saturated hydrocarbon. State the results.

test

result with saturated hydrocarbon

[1]

$$nCH_2=CH_2$$
 \longrightarrow $-(-CH_2-CH_2-)_n$

Complete the following sentence about this reaction by filling in the blank space.

The formation of poly(ethene) is an example of an	polymerisation	
reaction.	[1]]

(c) The label on the bottle lists the concentration of ions dissolved in the water in milligrams per litre.

concentration of ions in milligrams per litre						
calcium	32	nitrate	1			
chloride	5	potassium	0.5			
hydrogencarbonate	133	sodium	4.5			
magnesium	8	sulphate	7			

(i) State the name of two negative ions which appear in this	State	State th	e name of	f two	negative	ions	which	appear	in	this	list
--	-------	----------	-----------	-------	----------	------	-------	--------	----	------	------

[1

(ii) Which metal ion in this list is present in the highest concentration?

ГА	٦
-11	ı
 г.	J

(iii) Calculate the amount of magnesium ions in 5 litres of this mineral water.

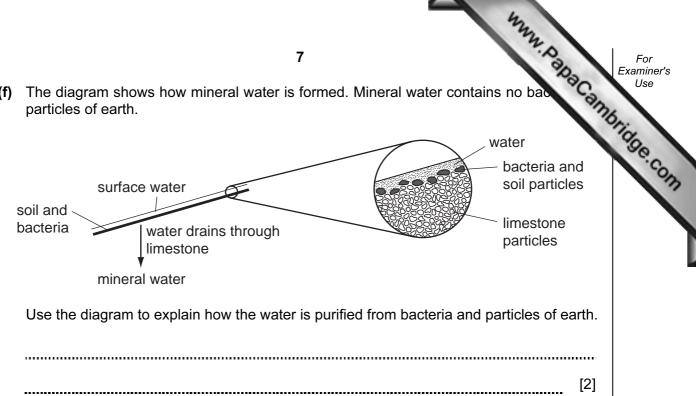
(iv) Which ion in the list reacts with aqueous silver nitrate to give a white precipitate?

[1]

(v) Which ion in the list gives off ammonia when warmed with sodium hydroxide and aluminium foil?

(vi) Complete the equation to show the formation of a potassium ion from a potassium atom.

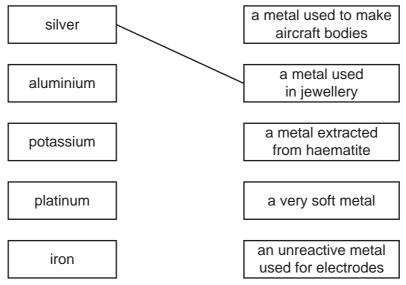
$$K \rightarrow K^{\dagger} + \dots$$
 [1]


[1]

www.papaCambridge.com (d) The pH of the mineral water is 7.8. Which one of the following best describes this pH? Tick one box. slightly acidic slightly alkaline neutral very acidic very alkaline [1] (e) Pure water can be obtained by distilling the mineral water using the apparatus shown below. flask mineral beaker water heat (i) State the name of the piece of apparatus labelled A. [1] (ii) Where does the pure water collect? [1]

(iii) How does the boiling point of the mineral water in the flask compare with the boiling

point of pure water?


(f) The diagram shows how mineral water is formed. Mineral water contains no back particles of earth.

[Total: 20]

[4]

www.PapaCambridge.com (a) Match up the metals in the boxes on the left with the descriptions in the boxes on the right. The first one has been done for you.

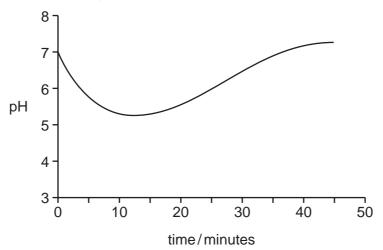
(b) Iron powder reacts rapidly with sulphuric acid to form aqueous iron(II) sulphate and hydrogen.

 $Fe(s) + H_2SO_4(aq) \rightarrow FeSO_4(aq) + H_2(q)$ Describe **two** things that you would see happening as this reaction takes place. [2]

- **(c)** Alloys are often more useful than pure metals.
 - (i) Complete the following sentences by filling in the blank spaces.

An alloy is a ______ of a metal with other elements. The properties of _____can be changed by the controlled use of additives to form

steel alloys. Increasing the amount of carbon in a steel makes it


(ii) Name one other alloy apart from steel.

.....

(iii) Iron rusts very easily. Describe two methods of preventing rusting.

[Total:12]

The diagram shows the changes in pH in a student's mouth after she has eaten a sw

(a) [Describe how the acidity	in the student's mouth	changes after	she has eaten the swee	t.
-------	--------------------------	------------------------	---------------	------------------------	----

(b) (i) Chewing a sweet stimulates the formation of saliva. Saliva is slightly alkaline. Use this information to explain the shape of the graph.

.....

(ii) State the name of the type of reaction which occurs when an acid reacts with an alkali.

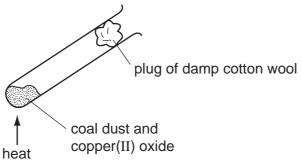
.....

[1]

(c) Many sweets contain citric acid. The formula of citric acid is shown below.

- (i) Put a ring around the alcohol functional group on the above formula. [1]
- (ii) State the name of the $-CO_2H$ functional group in citric acid.

[1]


(iii) Ethanoic acid also has a – CO₂H functional group. Write down the formula for ethanoic acid.

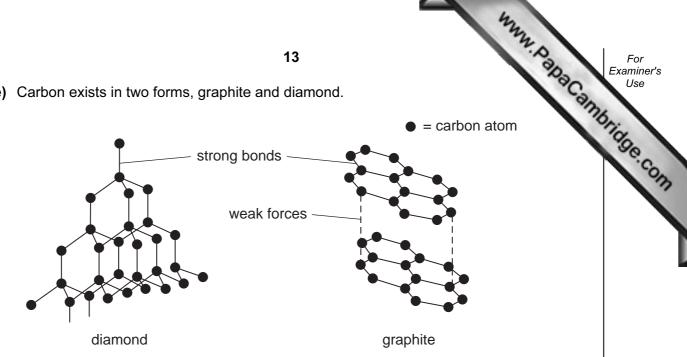
[1]

								WWW. Pale	
					10			1. Og	
(d)	Citr	ic acid ca	n be extracte	ed from lem	non juice a	s follows:			S.C.S.
	stag stag	ge 2: filter ge 3: wash ge 4: add	n the calciun	pitate whic n citrate pre id to the ca	h is forme ecipitate w	d (calcium ci	trate)		
	(i)		lcium carboi why there is		ed to lemo	n juice a fizz	zing is obs	erved.	
									[1]
	(ii)	Draw a d	iagram to sh	now step 2.	Label you	ır diagram.			
									[2]
	(iii)	Suggest	why the cald	cium citrate	precipitate	e is washed	with water		
									[1]
	(iv)	Describe	how you wo	ould carry c	out step 5.				
	(\)	Name day							[1]
	(v)	Which or		owing is red	quired for t	he fermentatien Fermentation		ars.	
		acid	high temp	erature	light	microorga	nisms	nitrogen	
									[1]

[Total: 14]

5 Some coal dust was heated with copper(II) oxide using the apparatus shown below.

(a)		al contains carbon and various hydrocarbons. The carbon reduces the copper de when heated.	(II)
	(i)	What do you understand by the term reduction?	
			[1]
	(ii)	At the end of the experiment a reddish-brown solid remained in the tube. State the name of this reddish-brown solid.	
			[1]
	(iii)	The reddish brown solid conducts electricity. How could you show that it conducts electricity?	
			[2]
(b)	Dur	ring the experiment, water collected on the cooler parts of the test tube.	
	(i)	Suggest where the hydrogen in the water comes from.	
			[1]
	(ii)	Water is a liquid. Describe the arrangement and motion of the particles in a liquid.	
			[2]


[Total: 7]

www.PapaCambridge.com The table below shows an early form of the Periodic Table made by John Newls 6 1866.

Н	F	Cl	Co, Ni	Br
Li	Na	K	Cu	Rb
Ве	Mg	Са	Zn	Sr
В	Αl	Cr	Υ	
С	Si	Ti	In	
N	Р	Mn	As	
0	s	Fe	Sc	

(a)	Newlands arranged the elements according to their relative atomic masses. What governs the order of the elements in the modern Periodic Table?	
		[1]
(b)	Use your modern Periodic Table to suggest why Newlands put cobalt and nickel in same place.	the
		[1]
(c)	Which group of elements is missing from Newlands' table?	
		[1]
(d)	Describe three other differences between Newlands' table and the modern Perio Table. You must not give any of the answers you mentioned in parts (a), (b) or (c).	dic
		[3]

(e) Carbon exists in two forms, graphite and diamond.

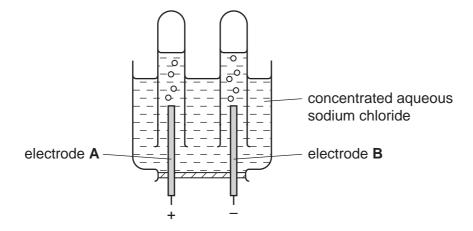
Use ideas about structure and bonding to suggest

(i)	why graphite is used as a lubricant,	
		[1]
(ii)	why diamond is very hard.	
		[1]
	[Total	: 8]

For
E xaminer's
Llco

- www.PapaCambridge.com 7 Compounds and elements vary in their volatility, solubility in water and elements conductivity depending on their bonding.
 - (a) Place copper, methane and water in order of their volatility.

most volatile	\rightarrow	
least volatile	\rightarrow	


[1]

(b) Complete the table to show the solubility in water and electrical conductivity of various solids.

solid	structure	soluble or insoluble	does it conduct electricity?	
silver	metallic	insoluble		
sodium chloride	ionic		no	
sulphur	covalent		no	
copper sulphate	ionic	soluble		

[4]

(c) The apparatus shown below is used to electrolyse concentrated aqueous sodium chloride.

(i)	Suggest	a suitable	substance	which	could be	e used	for the	electrode	es.
-----	---------	------------	-----------	-------	----------	--------	---------	-----------	-----

[1	1
 Γ.	1

(ii) State the name of the gas given off

at electrode A ,	
at electrode B .	[2]

	15 MANN, Dalla	For Examiner's
(iii)	State the name given to electrode A .	Use
(iv)	Explain why aqueous sodium chloride conducts electricity but solid sodium chloride does not.	Se. COM
	[2]	ı

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

DATA SHEET
The Periodic Table of the Elements

	0	Helium	20 Neon Neon	40 Ar Argon	84 K Kypton 36	Xenon Xenon 54	Rn Radon 86		175
	II/		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine	At Astatine 85		173
	IA		16 Oxygen 8	32 Sulphur	79 Se Selenium	128 Te Tellurium	Po Polonium 84		169
	^		14 N itrogen 7	31 P Phosphorus 16	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167
	ΛΙ		12 Carbon 6	28 Si Silicon	73 Ge Germanium 32	Sn Tin 50	207 Pb Lead 82		165
	Ш		11 Boron 5	27 A1 Aluminium	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium		162
					65 Zn Zinc	112 Cd Cadmium 48	201 Hg Mercury 80		159
					64 Copper 29	108 Ag Silver 47	197 Au Gold		157
Group					59 X Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152
Gr			_		59 Cobalt	103 Rh Rhodium 45	192 Ir Iridium		150
		T Hydrogen			56 Fe Iron	Ru Ruthenium 44	190 OS Osmium 76		
					Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144
					52 Cr Chromium	96 Mo Molybdenum	184 W Tungsten 74		141
					51 Vanadium	Niobium 41	181 Ta Tantalum		140
					48 T rtanium	91 Zr Zirconium 40	178 # Hafnium 72		1
					45 Scandium	89 ×	139 La Lanthanum 57 *	227 Ac Actinium	
	=		9 Be Beryllium	Mg Magnesium	40 Calcium	Strontium	137 Ba Barium 56	226 Ra Radium	
	_		7 Li Lithium	23 Na Sodium	39 K Potassium	Rubidium 37	133 Cs Caesium 55	Fr Francium 87	1 (

140 Ce Cerium 58	mic mass	Th lodn	mic) number
*58-71 Lanthanoid series 190-103 Actinoid series	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number
*58-71 Lanthanoid serie 190-103 Actinoid series	w	×	Ф
*58-71 190-10		Key	

	my	
175 Lu Lutetium	Lr wwencium	Dana Cambridge Com
Yb Yterbium 173	No Nobelium La 102	Stage Co.
169 Tm Thulium 69	Mendelevium	13
167 Er Erbium 68	Fm Fermium 100	l
165 Ho Holmium 67	ES Einsteinium 99	(r.t.p.).
Dysprosium 66	Californium 98	pressure
159 Tb Terbium 65	BK Berkelium 97	ature and
157 Gd Gadolinium 64	Cm Curium	m temper
152 Eu Europium 63	Am Americium 95	m³ at rooi
Samarium 62	Pu Plutonium 94	as is 24 d
Pm Promethium 61	Neptunium 93	of any g
Neodymium 60	238 U Uranium 92	one mole
Pr Praseodymium 59	Pa Protactinium 91	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
140 Ce	232 Th Thorium 90	The ,

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).