

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/03
Paper 3 (Exter	nded)	October/Nov	ember 2007
Candidates ar	nswer on the Ouestion Paner	1 hour	15 minutes

READ THESE INSTRUCTIONS FIRST

No Additional Materials are required.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part questions.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of 13 printed pages and 3 blank pages.

A list of techniques used to separate mixtures is given below.

				4h
		2		4.0
A list of techniques	s used to separate n	nixtures is given below	<i>I</i> .	AGC BI
fractional distillation	simple distillation	crystallization	filtration	diffusion
From the list choo	se the most suitable	technique to separate	e the following.	
water from aqueo	us copper(II) sulpha			
helium from a mix	cture of helium and a	irgon		
copper(II) sulphat	te from aqueous cop	pper(II) sulphate		
ethanol from aque	eous ethanol		•••••	
barium sulphate f	rom a mixture of wat	ter and barium sulpha	te	[5]
				[Total: 5]

The table	below gives the	3 number of protons, ne	eutrons and electrons in	atoms or ions	For iner's
particle	number of protons	number of electrons	number of neutrons	symbol or formula	Ortige
Α	9	10	10	¹⁹ ₉ F ⁻	i.com
В	11	11	12		
С	18	18	22		
D	15	18	16		
E	13	10	14		

(a)	Complete the table. The first line is given as an example.	[6]
(b)	Which atom in the table is an isotope of the atom which has the composition 11p, and 14n? Give a reason for your choice.	11e
		[2] : 8]

[Total: 10]

3 Magnesium reacts with bromine to form magnesium bromide.

www.PapaCambridge.com (a) Magnesium bromide is an ionic compound. Draw a diagram that shows the formula the compound, the charges on the ions and the arrangement of outer electrons around the negative ion.

The electron distribution of a bromine atom is 2, 8, 18, 7.

		e x to represent an electron from a magnesium atom. e o to represent an electron from a bromine atom. [3	3]
(b)	In t 1:2.	the lattice of magnesium bromide, the ratio of magnesium ions to bromide ions i	is
	(i)	Explain the term <i>lattice</i> .	
			2]
	(ii)	Explain why the ratio of ions is 1:2.	
			1]
	(iii)	The reaction between magnesium and bromine is redox. Complete the sentences	
		Magnesium is theagent because it ha	s
		electrons.	
		Bromine has beenbecause it has	
		electrons. [-	4]

- Zinc is extracted from zinc blende, ZnS.
- www.PapaCambridge.com (a) Zinc blende is heated in air to give zinc oxide and sulphur dioxide. Most of the sulphur dioxide is used to make sulphur trioxide. This is used to manufacture sulphuric acid. Some of the acid is used in the plant, but most of it is used to make fertilisers.

(i) Give another use of sulphur dioxide.

F 4 1
- 1711

(ii) Describe how sulphur dioxide is converted into sulphur trioxide.

[3]

(iii) Name a fertiliser made from sulphuric acid.

(b) Some of the zinc oxide was mixed with an excess of carbon and heated to 1000 °C. Zinc distils out of the furnace.

(i) Name the **two** changes of state involved in the process of distillation.

[2	2]
----	----

(ii) Why is it necessary to use an excess of carbon?

Triff to it he decedary to decede an excess of earboin.	
	[2]

(c)	is e cop	e remaining zinc oxide reacts with sulphuric acid to give aqueous zinc sulphate electrolysed with inert electrodes (the electrolysis is the same as that of eper(II) sulphate with inert electrodes).	Cambrid
	(i)	Zinc forms at the negative electrode (cathode). Write the equation for this reaction	on.
			[1]
	(ii)	Write the equation for the reaction at the positive electrode (anode).	
			[2]
	(iii)	The electrolyte changes from aqueous zinc sulphate to	
			[1]
(d)	Giv	ve two uses of zinc.	
	1.		
	2.		[2]
		[Total:	15]

For iner's

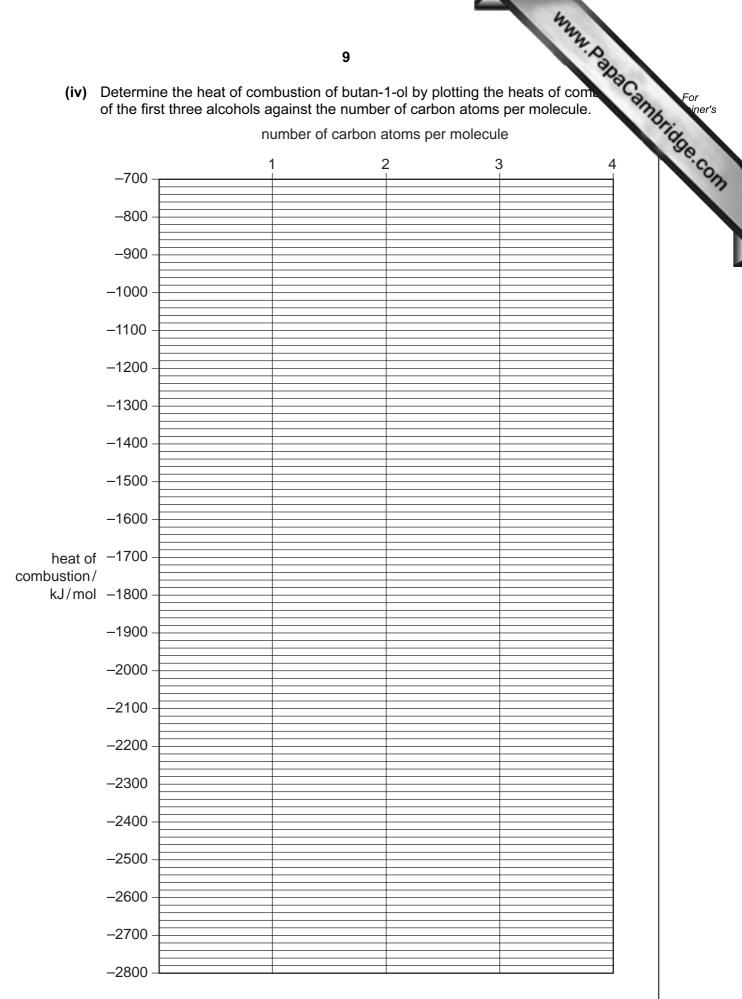
- 5 Methylamine, CH₃NH₂, is a weak base. Its properties are similar to those of ammonia
 - (a) When methylamine is dissolved in water, the following equilibrium is set up.

$$\label{eq:ch3NH2} \begin{split} \mathrm{CH_3NH_2} + \mathrm{H_2O} &\longleftarrow \mathrm{CH_3NH_3^+} + \mathrm{OH^-} \\ \mathrm{base} & \mathrm{acid} \end{split}$$

		Why was	
		7 W. Pak	1
Ие	thyla	mine, CH_3NH_2 , is a weak base. Its properties are similar to those of ammonia.	Car
a)	Wh	en methylamine is dissolved in water, the following equilibrium is set up.	13
		mine, CH_3NH_2 , is a weak base. Its properties are similar to those of ammoniaten methylamine is dissolved in water, the following equilibrium is set up. $CH_3NH_2 + H_2O \stackrel{\longrightarrow}{\longleftarrow} CH_3NH_3^+ + OH^-$ base acid	
	(i)	Suggest why the arrows are not the same length.	
			[1]
	(ii)	Explain why water is stated to behave as an acid and methylamine as a base.	
			[2]
(b)	an a	aqueous solution of the strong base, sodium hydroxide, is pH 12. Predict the pH aqueous solution of methylamine which has the same concentration. Give a reasyour choice of pH.	
			[2]
(c)	Met	hylamine is a weak base like ammonia.	
	(i)	Methylamine can neutralise acids.	
		2CH ₃ NH ₂ + H ₂ SO ₄ \rightarrow (CH ₃ NH ₃) ₂ SO ₄ methylammonium sulphate	
		Write the equation for the reaction between methylamine and hydrochloric acid. Name the salt formed.	
			[2]
	(ii)	When aqueous methylamine is added to aqueous iron(II) sulphate, a green precipitate is formed. What would you see if iron(III) chloride solution had been used instead of iron(II) sulphate?	
			[1]
	(iii)	Suggest the name of a reagent that will displace methylamine from one of its sa for example methylammonium sulphate.	lts,
			[1]

[Total: 9]

- The alcohols form a homologous series. The first four members are methanol, 6 propan-1-ol and butan-1-ol.


www.PapaCambridge.com (a) One characteristic of a homologous series is that the physical properties vary in a predictable way. The table below gives the heats of combustion of the first three alcohols.

alcohol	formula	heat of combustion in kJ/mol
methanol	СН₃ОН	-730
ethanol	CH ₃ -CH ₂ -OH	-1370
propan-1-ol	CH ₃ -CH ₂ -CH ₂ -OH	-2020
butan-1-ol	CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH	

(i)	<u> </u>	nat there is less chemical en energy is given out by the r		ı in
				[1]
(ii)	Is the reaction exothermic of	or endothermic?		
				[1]
iii)	Complete the equation for t	he complete combustion of	ethanol.	
	C ₂ H ₅ OH +	$O_2 \rightarrow$	+	[2]

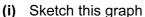
(iv) Determine the heat of combustion of butan-1-ol by plotting the heats of combustion of butan-1-ol by plotting the heat of combustion of butan-1-ol by plotting the of the first three alcohols against the number of carbon atoms per molecule.

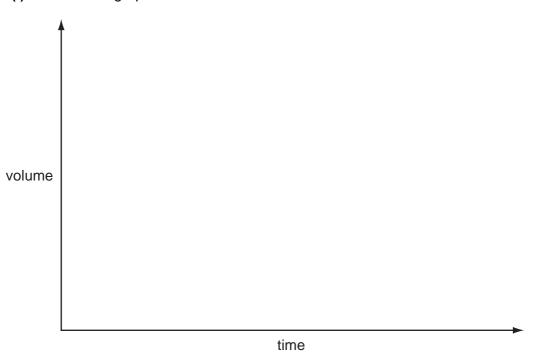
number of carbon atoms per molecule

kJ/mol [3] The heat of combustion of butan-1-ol =

	(v)	Describe two other characteristics of homologous series.	CS
			[2]
(b)		e the name and structural formula of an isomer of propan-1-ol. uctural formula	
	nar	ne	[2]
(c)	Me	thanol is made from carbon monoxide.	
(-,			
	C	$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ the forward reaction is exothermic	
	(i)	Describe how hydrogen is obtained from alkanes.	
			[2]
	(ii)	Suggest a method of making carbon monoxide from methane.	
			[2]
	(iii)	Which condition, high or low pressure, would give the maximum yield of methanological conditions.	ol?
		Give a reason for your choice.	
		pressure	
		reason	[2]
(d)	For	each of the following predict the name of the organic product.	
	(i)	reaction between methanol and ethanoic acid	
			[1]
	(ii)	oxidation of propan-1-ol by potassium dichromate(VI)	
			[1]
	(iii)	removal of H ₂ O from ethanol (dehydration)	
			[1]
			۲.1

[Total: 20]


$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(I)$$


(a)			11 cium carbonate, was ad e reaction to stop was m	ded to 5 cm ³ of hydr easured.	rochloric Bacal
			$Cl(aq) o CaCl_2(aq) + CaCl_2(aq)$	$SO_2(g) + H_2O(I)$ cm ³ of hydrochloric	acid.
	experiment	number of pieces of marble	concentration of acid in mol/dm ³	temperature/°C	time/min
	1	1	1.00	25	3
	2	1	0.50	25	7
	3	1 piece crushed	1.00	25	1
	4	1	1.00	35	2

Explain each of the following in terms of collisions between reacting particles.

(i)	Why is the rate in experiment 2 slower than in experiment 1?	
		[2]
(ii)	Why is the rate in experiment 3 faster than in experiment 1?	
		[2]
(iii)	Why is the rate in experiment 4 faster than in experiment 1?	
		[2]

www.PapaCambridge.com (b) An alternative method of measuring the rate of this reaction would be to measure volume of carbon dioxide produced at regular intervals.

[2]

(ii) One piece of marble, 0.3 g, was added to 5 cm³ of hydrochloric acid, concentration 1.00 mol/dm³. Which reagent is in excess? Give a reason for your choice. mass of one mole of $CaCO_3 = 100 g$

number of moles of CaCO₃ = number of moles of HCl =.....

reagent in excess is

[4] reason

(iii) Use your answer to (ii) to calculate the maximum volume of carbon dioxide produced measured at r.t.p.

[Total: 13]

BLANK PAGE

www.PapaCambridge.com

BLANK PAGE

www.PapaCambridge.com

15

BLANK PAGE

www.PapaCambridge.com

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

DATA SHEET
The Periodic Table of the Elements

1 1 1 1 1 1 1 1 1 1									ອັ	Group									
1 1 1 1 1 1 1 1 1 1	_	=											≡	≥	>	>	=	0	
1 1 1 1 1 1 1 1 1 1								T Hydrogen											
A	Cithium								1				l		14 N itrogen 7				
Case Case Secondaria Se	Na Sodium	24 Mg Magnesium											27 A1 Aluminium 13	28 Silicon	31 Phosphorus	91	35.5 C1 Chlorine		T
14 14 14 14 14 14 14 14	39 K	40 Ca calcium	45 Sc candium	48	51 V Vanadium 23	52 Cr Chromium 24	Mn Manganese				64 Cu Copper 29		70 Ga Gallium	73 Ge Germanium 32	75 AS Arsenic 33	Selenium 34	80 Br Bromine	84 Kr Kypton 36	16
137 148 149 148	Rb Rubidium	St Strontium	89 Kttrium	91 Zr conium	93 Nb liobium		Tc Technetium 43	Ru Ruthenium	Rhodium 45	106 Pd Palladium 46		112 Cd Cadmium 48	115 In Indium 49		122 Sb Antimony 51	Telturium			6
Frage Rad withing Actinism	CS Caesium	137 Ba Barium 56	La Inthanum	178 Hf Iafnium	181 Ta Tantalum	184 W Tungsten	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium	195 Pt Platinum 78		201 Hg Mercury 80	204 T 1 T 1		209 Bis Bismuth	Po Polonium 84	At Astatine 85		
140	Francium 8	226 Ra Radium 88	Actinium Actinium B9																l
a a = relative atomic mass 232 28	-71 Lar -103 Ac	nthanoid ctinoid s	l series eries		Ce Serium			Pm Promethium 61	Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	Dysprosium 66	- 29	167 Er Erbium 68	169 Tm Thulium	173 Yb Ytterbium 70	175 Lu Lutetium 71	
			= relative atomi = atomic symbonic symbonic symbonic symbonic		232 Th Thorium	Pa Protactinium 91	238 U Uranium 92	Neptunium	Pu Plutonium	Am Americium 95	Curium 96	BK Berkelium	Californium 98	Einsteinium	7	Md Mendelevium 101	Nobelium 102	Lr Lawrencium 103	13.