

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

NUMBER	0620/06
CENTRE	CANDIDATE NUMBER
CANDIDATE NAME	

October/November 2007

1 hour

Candidates answer on the Question Paper.

No additional materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

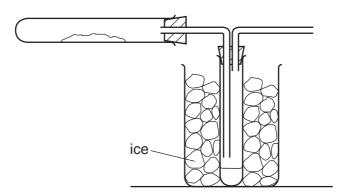
You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

At the end of the examination, fasten all your work securely together.


The number of marks is given in brackets [] at the end of each question or part question.

t	For Exam	iner's Use
	1	
	2	
	3	
	4	
	5	
	6	
	7	
	Total	

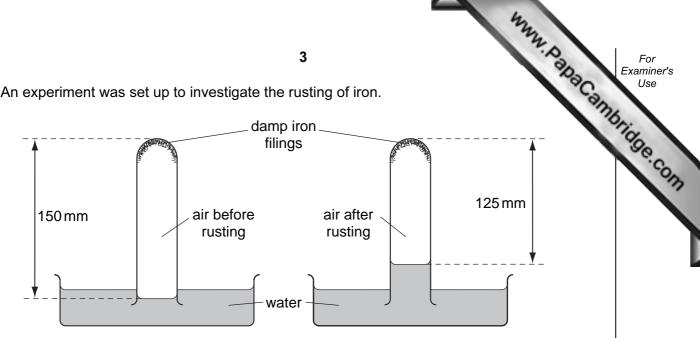
This document consists of 13 printed pages and 3 blank pages.

www.PapaCambridge.com Hydrated copper sulphate crystals, CuSO₄.5H₂O were heated in the apparatus 1 below.

- (a) Indicate on the diagram using arrows
 - (i) where the copper sulphate crystals are placed,
 - (ii) where heat is applied.

[2]

(b) What is the purpose of the ice?


[1	1
 L.	4

(c) The crystals changed colour from ______to ____ [2]

[Total: 5]

[Total: 5]

An experiment was set up to investigate the rusting of iron. 2

(a)	Describe t	the appearance	of the	iron	after rusting.	
-----	------------	----------------	--------	------	----------------	--

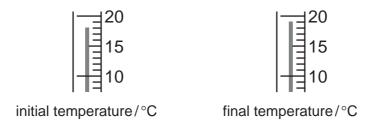
			[1]
(b)	(i)	Why does the water rise up the tube?	
			[1]
	(ii)	Calculate the percentage change in the volume of air in the tube.	
			[1]
(c)	Wh	at difference would be observed if	
	(i)	an iron nail was suspended in the tube instead of using iron filings,	
			[1]
	(ii)	the water contained salt?	
			[1]

3 The information in the box is about the preparation of zinc nitrate crystals.

Th	e info	4 ormation in the box is about the preparation of zinc nitrate crystals.	For Examiner's Use
S	tep 1	: Add a small amount of zinc oxide to some hot dilute nitric acid, and stir.	Tage
S	tep 2	: Keep adding zinc oxide until it is in <i>excess</i> .	OM
S	tep 3	Remove the excess zinc oxide to leave colourless zinc nitrate solution.	
S	tep 4	Evaporate the zinc nitrate solution until it is saturated.	
S	tep 5	: Leave the saturated solution to cool. White crystals form on cooling.	
S	tep 6	: Remove the crystals from the remaining solution.	
S	tep 7	: Dry the crystals on a piece of filter paper.	
(a)	Su	ggest a reason for using <i>excess</i> zinc oxide in Step 2.	
(b)	Su	ggest how the <i>excess</i> zinc oxide can be removed from the solution in Step 3.	[1]
(c)	(i)	What is meant by the term saturated solution?	
			[2]
	(ii)	What practical method could show the solution to be saturated?	
			[1]
(d)	Wh	ny are the crystals dried in Step 7 using filter paper instead of by heating?	

[Total: 6]

www.PapaCambridge.com A student investigated the reaction of dilute hydrochloric acid with two different calcium carbonate (marble) and calcium oxide. Four experiments were carried out.

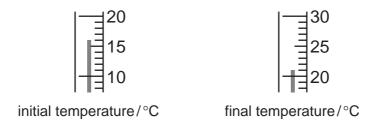

Experiment 1

thermometer.

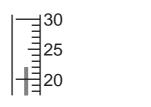
By using a measuring cylinder, 50 cm³ of dilute hydrochloric acid was poured into a polystyrene cup and the initial temperature of the acid was measured. 2.5 g of small marble chips were added to the cup and the mixture stirred with the


The temperature of the mixture was measured after 2 minutes.

Use the thermometer diagrams to record the temperatures in the table of results on page 6.


Experiment 2

Experiment 1 was repeated using 2.5 g of powdered calcium carbonate. Use the thermometer diagrams to record the results in the table.


Experiment 3

Experiment 1 was repeated using 1.5 g of lumps of calcium oxide. Use the thermometer diagrams to record the temperatures in the table.

Experiment 4

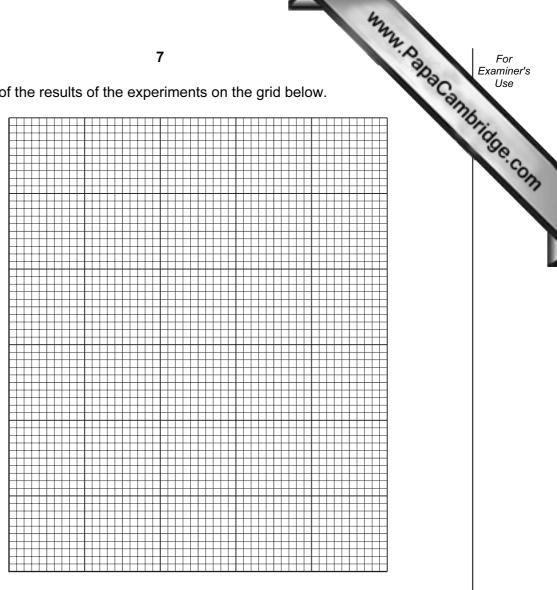
Experiment 1 was repeated using 1.5g of powdered calcium oxide. Use the thermometer diagrams to record the results in the table.

50 45 40

initial temperature/°C

final temperature/°C

Table of results


Evenoviment	temperature/°C			
Experiment	initial	final	difference	
1				
2				
3				
4				

		[4]
(a)	What would be observed in Experiment 2?	
		[1]

[3]

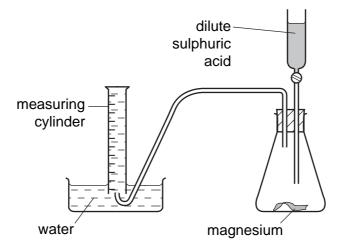
(b) Draw a bar chart of the results of the experiments on the grid below.

temperature difference/°C

experiment number

(c)	Wh	ich experiment produced	
	(i)	the smallest temperature change,	
			[1]
	(ii)	the largest temperature change?	
			[1]
(d)	Giv	ve two reasons why the temperature changes are different in (c).	
	1.		
	2.		
			[2]

	8 WWW. Pall	For Examiner's
(e)	In Experiment 1, how would you know which reactant is in excess? Explanation answer.	Use
	[2]	S.COM
(f)	Explain how the temperature changes would differ in the experiments if 100 cm ³ of hydrochloric acid were used.	1
	[2]	
	[Total: 16]	

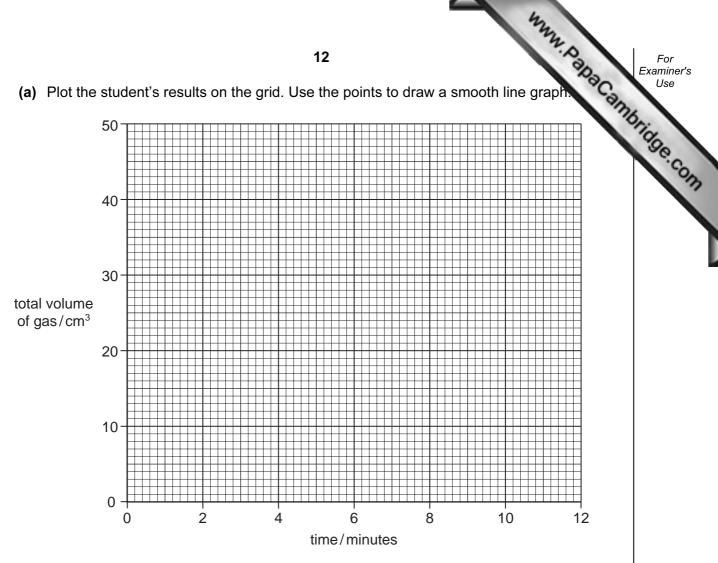

Three different liquids P, Q and R were analysed. Q was an aqueous solution of 5 hydroxide.

tests	ysed. Q was an aqueous solution of vations are in the following table. observations
(a) Test the pH of the liquids using indicator paper. Note the colour of the paper.	P colour red
οι της ράρει.	pH 1
	Q colour
	pH[2]
	R colour orange
	pH 5
(b) (i) Add a 5 cm piece of magnesium to about 3 cm ³ of liquid P in a test–tube.	
Test the gas given off.	bubbles of gas
	lighted splint pops
(ii) Repeat (b)(i) using liquids Q , and R .	
Do not test for any gases.	Q
	R[2]

	tests	observations	Ose
	 (c) To about 2 cm³ of liquid P add 1 spatula measure of sodium carbonate. Test the gas given off. 		Bridge Com
		[3]	
	(d) By using a teat pipette add aqueous silver nitrate to about 1 cm ³ of liquid P .	white precipitate	
	(e) By using a teat pipette add liquid Q to about 1 cm ³ of aqueous iron(II) sulphate.	[2]	
(f)	Name the gas given off in test (b)(i).	[1]	
(g)	Name the gas given off in test (c).	[1]	
(h)	Identify liquid P .	[1]	
(i)	What conclusions can you draw about liqu		
		[2]	

[Total: 14]

www.papaCambridge.com Magnesium reacts with dilute sulphuric acid to form hydrogen gas. The speed 6 reaction was investigated using the apparatus below.

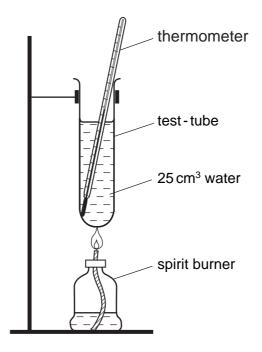


In an experiment 50 cm³ of dilute sulphuric acid was added to a large piece of magnesium. A student measured the total volume of gas produced at 2 minute intervals.

Use the measuring cylinder diagrams to complete the table

time/minutes	measuring cylinder diagram	total volume of collected/cm³
0	5 = 10	
2	10 = 15 = 20	
4	25 30 	
6	25 = 30 = 35	
8	35 40 45	
10	40 = 45 = 50	
12	40 = 45 = 50	

(a) Plot the student's results on the grid. Use the points to draw a smooth line graph.


(b)	(i)	At which time does the result appear to be inaccurate?	
			[1]
	(ii)	Use the graph to deduce what the correct volume should be at this time.	
			[1]

[Total:8]

[3]

7 Diesel is a liquid fuel obtained from crude oil. Biodiesel is a fuel made from oil on from the seeds of plants such as sunflowers.

www.PapaCambridge.com Using the apparatus below plan an experiment to investigate which of these two fuels produces more energy.

	[0]
 	 [6]

[Total: 6]

BLANK PAGE

www.PapaCambridge.com

BLANK PAGE

www.PapaCambridge.com

16

BLANK PAGE

www.PapaCambridge.com

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.