

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE		

NUMBER

CENTRE NUMBER

					Ĺ

CHEMISTRY Paper 2 May/June 2008

1 hour 15 minutes

0620/02

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

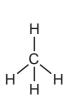
You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES

Answer all questions.

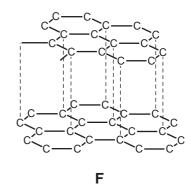
A copy of the periodic table is printed on page 16.


At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
1				
2				
3				
4				
5				
6				
7				
Total				

This document consists of 16 printed pages.



$$\begin{array}{c} Ca^{2+} CO_3^{2-} Ca^{2+} CO_3^{2-} Ca^{2+} \\ CO_3^{2-} Ca^{2+} CO_3^{2-} Ca^{2+} CO_3^{2-} \\ Ca^{2+} CO_3^{2-} Ca^{2+} CO_3^{2-} Ca^{2+} \\ CO_3^{2-} Ca^{2+} CO_3^{2-} Ca^{2+} CO_3^{2-} \\ CO_3^{2-} Ca^{2+} CO_3^{2-} Ca^{2+} CO_3^{2-} \\ \end{array}$$

В

C

D

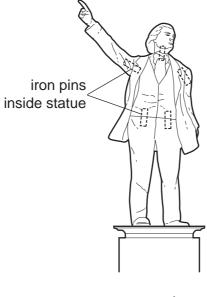
Ε

(a) Answer these questions using the letters A, B, C, D, E or F.

(i)	Which	one of	these s	tructures	is ionic	!
-----	-------	--------	---------	-----------	----------	---

- (ii) Which one of these structures represents ethanol?
- (iii) Which one of these structures represents a gas which turns limewater milky?
- (iv) Which one of these structures is an unsaturated hydrocarbon?

(b) Describe a chemical test for an unsaturated hydrocarbon.


test

[2]

(c)	State the chemical name of struct	ture B .	10.
(d)	Structure F has several uses. White Tick one box.	ich one of the following is a correct use of structure F	=?
	for cutting metals		
	as a lubricant		
	for filling balloons		
	as an insulator		[1]
(e)	The structures A to E are compou	unds. What do you understand by the term <i>compound</i>	d?
		[[1]
(f)	State the type of bonding in struct		[1]
			- -

[Total: 10]

The diagram shows a statue in a park in an industrial town. The statue is made 2 limestone.

(a) State the name of the chemical present in limestone.

the same statue after 20 years

		[1]
(b)	Use ideas about the chemistry of atmospheric pollutants to suggest how and why the statue changes over 20 years.	Э
		[4]
(c)	Parts of the statue are joined together with iron pins. After 30 years, the arm falls off statue. Suggest why the arm falls off.	the
		[1]

(d) Iron has several isotopes.

(i)	What do	vou understa	nd by the te	erm <i>isotopes?</i>
1''	vviiat ao	you unacista	nd by the to	Jiiii ioolopco:

	WWW. D
5	To Be
n has several isotopes.	For
What do you understand by the term isotopes?	TO THE STATE OF TH
	[1] COM
The table shows the number of subatomic particles in an atom of ire	on.

(ii) The table shows the number of subatomic particles in an atom of iron.

type of particle	number of particles	relative charge on the particle
electron	26	
neutron	30	
proton	26	

Complete the table to show the relative charge on each particle	€.
---	----

[3]

(iii) State the number of nucleons in this isotope of iron.

E Z	4 1
- 11	11
L	٠,٦

(e) Some isotopes are radioactive. State one industrial use of radioactive isotopes.

- 11	
г.	

(f) Iron reacts with very dilute nitric acid.

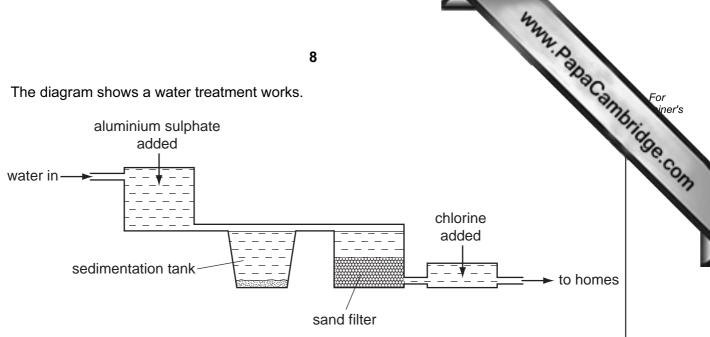
Fe +
$$2HNO_3 \longrightarrow Fe(NO_3)_2 + H_2$$

Write a word equation for this reaction.

[1]

[Total: 13]

3 The table shows the concentration of some ions present in seawater.


(a) Which negative ion has the highest concentration in seawater?

s the concentratio	6 on of some ions present	in seawater. concentration of ion in g/dm³ 0.07
name of ion	formula of ion	concentration of ion in g/dm³
bromide	Br⁻	0.07
calcium	Ca ²⁺	0.4
chloride	Cl ⁻	19.1
magnesium	Mg ²⁺	1.2
potassium	K⁺	0.3
sodium	Na⁺	10.6
	SO ₄ ²⁻	0.8

		[1]
(b)	State the name of the ion with the formula SO_4^{2-} .	
		[1]
(c)	Which two ions in the table are formed from Group I elements?	
	and	[1]
(d)	When seawater is evaporated a number of different compounds are formed. State the name of the compound which is present in the greatest quantity.	
		[1]
(e)	State the names of two ions in the table which move to the cathode when seawate electrolysed.	er is
	and	[2]

		7 en concentrated seawater is electrolysed, chlorine is formed at one of the ele To which Period in the Periodic Table does chlorine belong?	
		7	
(f)	Wh	en concentrated seawater is electrolysed, chlorine is formed at one of the ele	
	(i)	To which Period in the Periodic Table does chlorine belong?	1
		[1]	
	(ii)	Draw the electronic structure of a chlorine molecule. Show only the outer electrons.	i
			i
		[2]	
(g)		nking water can be obtained by purifying seawater. Dolain why distillation rather than filtration is used to purify seawater for drinking.	
		[2]	
		[Total: 11]	

The diagram shows a water treatment works.

(a)	State one use of water in industry.	
		[1]
(b)	Explain how the sand filter helps purify the water.	
		[2]
(c)	The aluminium ions in aluminium sulphate cause clay particles to clump together. Describe a test for aluminium ions.	
	test	
	result	
		[3]
(d)	Why is chlorine added to the water?	
(4)	This is sincimo added to the water.	[1]

www.PapaCambridge.com **(e)** Chlorine is in Group VII of the Periodic Table. When chlorine reacts with a solution of potassium bromide, the solution tunreddish - brown colour.

(i) Write a word equation for this reaction.

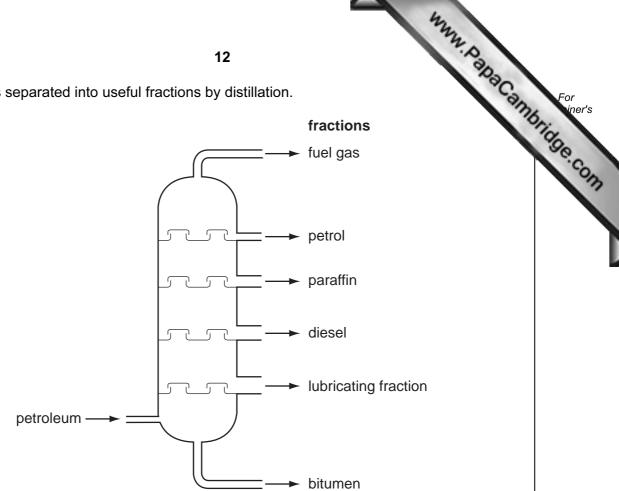
			[2]
	(ii)	Explain why iodine does not react with a solution of potassium bromide.	
			[1]
(f)	Wh	en chlorine reacts with sodium to form sodium chloride, energy is released.	
	(i)	State the name given to a reaction which releases energy.	
			[1]
	(ii)	What type of bonding is present in sodium chloride?	
			[1]
	(iii)	Explain what happens in terms of electron transfer when a sodium atom reacts of a chlorine atom.	with
			[2]
		lTotal·	141

	May	
	10	
	ry crystals of magnesium sulphate can be made by reacting excess magnetism with dilute sulphuric acid. ring the reaction, bubbles of a colourless gas are given off. attemption to the same of this gas.	Can
	ring the reaction, bubbles of a colourless gas are given off. Ite the name of this gas.	
		[1]
(b) (i)	Why is excess magnesium used?	
		[1]
(ii)	How is the excess magnesium removed from the reaction mixture?	
		[1]
	scribe how you can obtain pure dry crystals of magnesium sulphate from a solu magnesium sulphate.	tion
*****		[2]
(d) (i)	Describe one other reaction that makes magnesium sulphate.	
		 [1]
(ii)	Write a word equation for the reaction you suggested in part (d)(i).	
, ,		
		[1]
(iii)	Magnesium sulphate can be used as a medicine. Explain why the chemicals us in medicines need to be as pure as possible.	ed
		 [47
		[1]

www.PapaCambridge.com (e) A student repeats the experiment using excess sulphuric acid. She obtains 24 g of magnesium sulphate from 4.8 g of magnesium. How much magnesium sulphate can the student obtain from 1.2g of magnesium?

[1]

(f) A sample of 20 g of impure magnesium sulphate contains 19.5 g of magnesium sulphate.

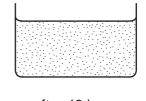

Calculate the percentage purity of the magnesium sulphate.

[1]

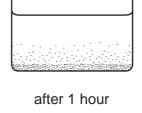
[Total: 10]

Petroleum is separated into useful fractions by distillation. 6

(a) (i) What do you understand by the term fraction?



		[1]
(ii)	Which fraction has the lowest boiling point?	
		[1]
(iii)	Describe how distillation is used to separate these fractions.	
		[2]
(iv)	State a use for	
	the paraffin fraction,	
	the bitumen fraction.	[2]


(b)	Eth	ene can be ma	de by cracking certai	n hydrocarbon frac	tions.	aCan.
	(i)	Explain what i	s meant by the term	cracking.		
						[1]
	(ii)	Complete the	equation for the crac	king of tetradecane	e, C ₁₄ H ₃₀ .	
			C ₁₄ H ₃₀ →	+ C ₂ ł	H_4	[1]
(c)			when steam reacts woric acid is used.	vith ethene at high	pressure and temperatur	e. A
			ethene + st	team ⇌ ethanol		
	(i)	What is the fu	nction of the catalyst	?		
						[1]
	(ii)	What is the mo	eaning of the symbol	⇌ ?		
						[1]
	(iii)	What is this pr	o formed when yeast rocess called? und the correct answ		ution.	
		addition	combustion	fermentation	neutralisation	[1]
	(iv)	Phosphoric ac phosphoric ac		tate what you woul	d observe when a solution	n of
		blue litmus,				
		a solution of s	sodium carbonate			[2]
					[Total:	131

For iner's

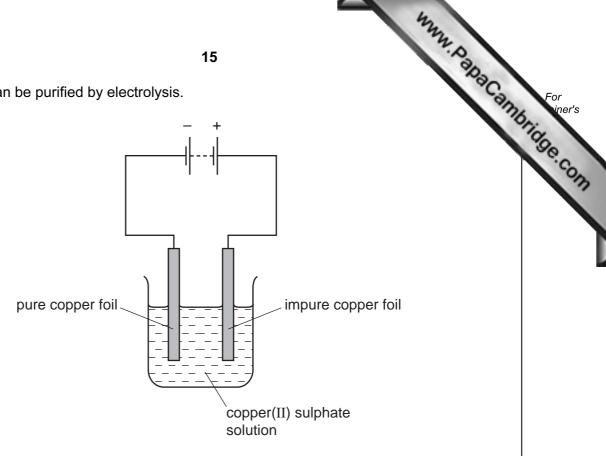
www.PapaCambridge.com 7 A student placed a crystal of copper(II) sulphate in a beaker of water. After one hour the crystal had completely disappeared and a dense blue colour observed in the water at the bottom of the beaker. After 48 hours the blue colour had sprea throughout the water.

water —	
	ppper(II) sulphate ystal

а	ıfter	48	hour	s

(a)	a) Use the kinetic particle theory to explain these observations.					
	[2]					
(b)	Describe the arrangement and motion of the particles in the copper(II) sulphate crystal.					
	arrangement					

(c) Copper ions can be separated from other metal ions by paper chromatography. Draw a labelled diagram of the apparatus for paper chromatography.


In your diagram include

motion

- the solvent,
- the spot where the solution containing copper ions is placed.

[2]

(d) Copper can be purified by electrolysis.

(i) Choose a word from the list below which describes the pure copper foil. Put a ring around the correct answer.

	anion	anode	cathode	cation	electrolyte	[1]
(ii)	Describe wha	t happens duri	ng this electrolys	is to		
	the pure copp	oer foil,				•••••
	the impure co	opper foil				[2]
					[To	tal: 9]

DATA SHEET
The Periodic Table of the Elements

								Gre	Group									
_	=											III	IV	Λ	IN	IIA	0	
							- :										4 :	
							Hydrogen										Helium 2	
7	6					_						11	12	14	16	19	20	
=	Be											Ф	ပ	z	0	ш	Ne	
Lithium 3	Beryllium 4											Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10	
23	24											27	28		32		40	
Na	Mg											ΝI	S		ဟ	CI	Ā	
Sodium 11	2 5 ≥	F										Aluminium 13	Silicon 14	Phosphorus 15	Sulphur 16	17	Argon 18	
39	40	45	48	51	52	55	99	59	59	64		70	73		62	80	84	
¥	Ca	လွ	j	>	ပ်	M	Fe	ද	Z	చె	Zu	Ga	Ge	As	Se	Б	궃	
Potassium 19	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32		Selenium 34	Bromine 35	Krypton 36	
85	88	88	91	93	96		101		106		112	115	119		128		131	
Rb	Š	>	Zr	Q Q	ω	ည			Pd	Ag	ဗ	In	Sn	Sb	ē	Ι	×	
Rubidium 37	Strontium 38	Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	m Technetium 43	Ruthenium 44	_	Palladium 46	Silver 47	Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54	
133	137	139	178	181		186	190		195		201	204	207					
CS			Ξ		>	Re	Os	i	ቷ	Αn	Нg	11	Ър	ö	Ъ	¥	Ru	
Caesium 55	Barium 56	Lanthanum 57 *	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	lridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82		Polonium 84	Astatine 85	Radon 86	
	226	227																
ъ																		
Francium 87	Radium 88	8																
*58-71	*58-71 Lanthanoid ceries	id corios	,	140		144		150	152	157	159	162	165	167	169	173	175	
+90-10,	30-7 1 Lantinai July Sent 190-103 Actinoid series	l carioc		రి	ፈ	PN	Pm		E	gg	Д	ρ	운	ш	Ę	Υb	3	
5	מאוויטה ט	001100		Cerium 58	Praseodymium 59	nn Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71	
	ď	a = relative atomic mass	nic mass	232		238												

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Curium 96

b = proton (atomic) number

a = relative atomic mass X = atomic symbol

Key

www.papaCambridge.com