www.PapaCambridge.com

Location Entry Codes

As part of CIE's continual commitment to maintaining best practice in assessment, CIE uses different variants of some question papers for our most popular assessments with large and widespread candidature. The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions is unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiners' Reports that are available.

Question Paper

Introduction First variant Question Paper Second variant Question Paper

Mark Scheme

Introduction
First variant Mark Scheme
Second variant Mark Scheme

Principal Examiner's Report

Report
Introduction
First variant Principal Examiner's Report
Second variant Principal Examiner's Report

Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

The titles for the variant items should correspond with the table above, so that at the top of the first page of the relevant part of the document and on the header, it has the words:

• First variant Question Paper / Mark Scheme / Principal Examiner's Report

or

Second variant Question Paper / Mark Scheme / Principal Examiner's Report

as appropriate.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

May	A. Danas
VERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS rnational General Certificate of Secondary Education	ambridge.co.
	13

NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/31

Paper 3 (Extended) May/June 2008

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES

Answer all questions.

A copy of the Periodic Table is printed on page 12.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part questions.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
Total	

1 hour 15 minutes

This document consists of 11 printed pages and 1 blank page.

For each of the following select an element from Period 4, matches the description.	potassium to krypto
(a) It is a brown liquid at room temperature.	
(b) It forms a compound with hydrogen having the formula XH ₄ .	
(c) A metal that reacts violently with cold water.	
(d) It has a complete outer energy level.	
(e) It has oxidation states of 2 and 3 only.	
(f) It can form an ion of the type X ⁻ .	
(g) One of its oxides is the catalyst in the Contact Process.	
	[Total: 7]

ide

www.PapaCambridge.com (a) Complete the table which gives the names, symbols, relative masses and charges of the three subatomic particles. 2

name	symbol	relative mass	relative charge
electron	e¯		
proton		1	
	n		0

		[3]
Use	e the information in the table to explain the following.	
(i)	Atoms contain charged particles but they are electrically neutral because the have no overall charge.	еу
		[2]
(ii)	Atoms can form positive ions.	
		[2]
(iii)	Atoms of the same element can have different masses.	
		[2]
(iv)	Scientists are certain that there are no undiscovered elements missing from Periodic Table from hydrogen to lawrencium.	the
		[1]
	[Total:	10]
	(i) (ii)	(iii) Atoms can form positive ions. (iii) Atoms of the same element can have different masses. (iv) Scientists are certain that there are no undiscovered elements missing from Periodic Table from hydrogen to lawrencium.

2	C	:_		h.,	والمسام ما م	·-:-
3	Conner	18	nurmea	nv	electroly	/SIS

		is purified by electrolysis. mplete the following. e positive electrode (anode) is made from e negative electrode (cathode) is made from	
		4	
Col	oper	is purified by electrolysis.	Cam
(a)	Cor	mplete the following.	O
	Th	e positive electrode (anode) is made from	
	Th	e negative electrode (cathode) is made from	
	Th	e electrolyte is aqueous	[3]
(b)	Wri	te an ionic equation for the reaction at the positive electrode (anode).	
			[2]
(c)	(i)	Give two reasons why copper is used,	
		in electric wiring,	
			[2]
		in cooking utensils.	
			[2]
	(ii)	Give another use of copper.	
			[1]
		[Total:	10]

- Sulphuric acid is a typical strong acid.
 - (a) Change the equations given into a different format.
 - (i) Mg + $H_2SO_4 \rightarrow MgSO_4 + H_2$ Change into a word equation.

www.PapaCambridge.com [1]

(ii) lithium oxide + sulphuric acid → lithium sulphate + water Change into a symbol equation.

[2]

(iii) CuO + $2H^+ \rightarrow Cu^{2+} + H_2O$ Change the ionic equation into a symbol equation.

[2]

(iv) $Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + CO_2 + H_2O_3$ Change into a word equation.

[1]

(b) When sulphuric acid dissolves in water, the following reaction occurs. $H_2SO_4 + H_2O \longrightarrow HSO_4^- + H_3O^+$ Explain why water is behaving as a base in this reaction.

[2]

(c) Sulphuric acid is a strong acid, ethanoic acid is a weak acid. Explain the difference between a strong acid and a weak acid.

.....

[Total: 10]

$$CO(g) + Cl_2(g) \underset{\text{heat}}{\overset{\text{cool}}{\rightleftharpoons}} COCl_2(g)$$

www.PapaCambridge.com (a) When the pressure on the equilibrium mixture is decreased, the position of equilibrium moves to left.

(i) How does the concentration of each of the three chemicals change?

[2]

(ii) Explain why the position of equilibrium moves to left.

	[2]

(b) Using the information given with the equation, is the forward reaction exothermic or endothermic? Give a reason for your choice.

	21

(c) Carbonyl chloride reacts with water to form two acidic compounds. Suggest which acidic compounds are formed.

1	
٠.	

(d) The structural formula of carbonyl chloride is given below.

Draw a diagram that shows the arrangement of the valency electrons in one molecule of this covalent compound.

Use x for an electron from a chlorine atom.

Use o for an electron from a carbon atom.

Use • for an electron from an oxygen atom.

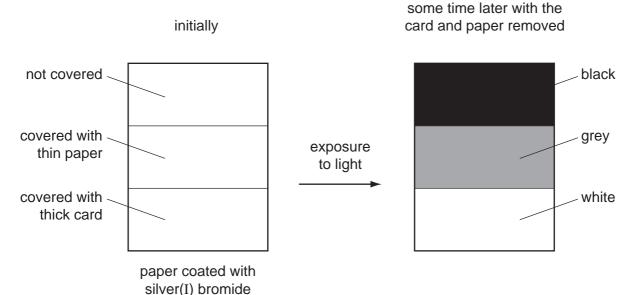
- physical state of the reactants
- light
- the presence of a catalyst
- www.PapaCambridge.com (a) The first recorded dust explosion was in a flour mill in Italy in 1785. Flour contains carbohydrates. Explosions are very fast exothermic reactions.

(i)	Use the collision theory to explain why the reaction between the particles of flour
	and the oxygen in the air is very fast.

.....

[2]

(ii) Write a word equation for this exothermic reaction.


[1]

The decomposition of silver(I) bromide is the basis of film photography. The equation for this decomposition is:

$$2AgBr \longrightarrow 2Ag + Br_2$$
 white black

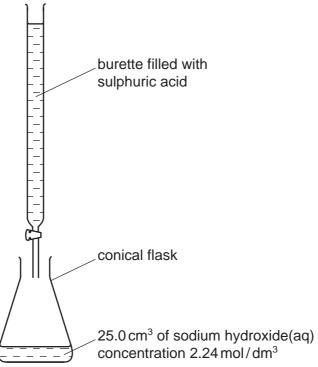
This reaction is photochemical.

A piece of white paper was coated with silver(I) bromide and the following experiment was carried out.

(b) Explain the results.

[3

www.PapaCambridge.com (c) The fermentation of glucose is catalysed by enzymes from yeast. Yeast is ad aqueous glucose, the solution starts to bubble and becomes cloudy as more ye cells are formed.


$$C_6H_{12}O_6(aq) \longrightarrow 2C_2H_5OH(aq) + 2CO_2(g)$$

The reaction is exothermic.

Eventually the fermentation stops when the concentration of ethanol is about 12%.

(i)	What is an enzyme?	
		[1]
(ii)	Pasteur said that fermentation was respiration in the absence of air. Sugges definition of <i>respiration</i> .	it a
		[2]
(iii)	On a large scale, the reaction mixture is cooled. Suggest a reason why this necessary.	s is
		[1]
(iv)	Why does the fermentation stop? Suggest two reasons.	
		[2]
(v)	When the fermentation stops, there is a mixture of dilute aqueous ethanol are yeast. Suggest a technique which could be used to remove the cloudiness due the yeast.	
		[1]
	Name a technique which will separate the ethanol from the ethanol/water mixtur	e.
		[1]
		1/1
	[Total: 1	14]

www.PapaCambridge.com 7 Crystals of sodium sulphate-10-water, Na₂SO₄.10H₂O, are prepared by titration.

(a) 25.0 cm³ of aqueous sodium hydroxide is pipetted into a conical flask. A few drops of an indicator are added. Using a burette, dilute sulphuric acid is slowly added until the indicator just changes colour. The volume of acid needed to neutralise the alkali is noted.

ipnate-10-water.	
	[4]

Suggest how you would continue the experiment to obtain pure, dry crystals of sodium

(b) Using 25.0 cm³ of aqueous sodium hydroxide, 2.24 mol / dm³, 3.86 g of crystals were obtained. Calculate the percentage yield.

$$2NaOH + H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2O$$

 $Na_2SO_4 + 10H_2O \longrightarrow Na_2SO_4.10H_2O$

Number of moles of NaOH used =		
Maximum number of moles of Na ₂ SO ₄ .10H ₂ O that could be formed =		
Mass of one mole of Na ₂ SO ₄ .10H ₂ O = 322 g		
Maximum yield of sodium sulphate-10-water =		g
Percentage yield =	%	[4]

[Total: 8]

	_	reas of the Amazon rain forest are cleared each year to grow soya beans. The down and burnt.								
(a)	Why do these activities increase the percentage of carbon dioxide in the atmosphere?									
		roz								
		[2]								
(b)	•	ra beans contain all three main food groups. Two of which are protein and pohydrate.								
	(i)	What is the third group?								
		[1]								
	(ii)	Draw the structural formula of a complex carbohydrate such as starch.								
		[0]								
	(iii)	[3] Compare the structure of a protein with that of a synthetic polyamide. The structure of a typical protein is given below.								
		-N $-C$ $-N$ $-C$ $-C$ $-C$ $-C$ $-C$ $-C$ $-C$ $-C$								
		How are they similar?								
		How are they different?								

[Total: 9]

[3]

BLANK PAGE

www.PapaCambridge.com

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

DATA SHEET
The Periodic Table of the Elements

1 1 1 1 1 1 1 1 1 1																				1			
1		0	₽ Д		20	Se		40	Ā	Argon 18	84	Ϋ́	Krypton 36	131	Xe	Xenon 54			98				175
		=			19	ш				1	80	Ā	Bromine 35	127		53		¥	Astatine 85				173
1		>			16	0		32	တ	Sulphur 16	79	Se	Selenium 34	128	<u>a</u>	Tellurium 52		Ъо	Polonium 84				169
1		>			41	Z	Nitrogen 7				75	As	Arsenic 33	122	Sb	Antimony 51			Bismuth				167
1		≥			12	ပ				4	73				Sn		207	Ъ					165
1		=			7	മ		27	ΝI	Aluminium 13	02	Ga	3			49		11	Thallium 81				162
11 1 1 1 1 1 1 1 1											65	Zu	Zinc 30	112	ဦ	Cadmium 48	201	Ηg	Mercury 80				159
11 1 1 1 1 1 1 1 1											64	C	58			47			79				157
1	dno										59	Z	Nickel 28	106	Pd	Palladium 46	195	ፈ	Platinum 78				152
1 1 2 8 8 9 9 9 9 9 9 9 9	פֿ				1						59	ပိ	Cobalt 27	103	R	Rhodium 45	192		77				150
1 1 2 8 8 9 1 18 1 18 1 18 1 18 1 1			- I	Hydrogen 1									26	101	Ru	Ruthenium 44	190	Os	Osmium 76				
11 18 18 19 18 19 18 19 19											55	Mn	Manganese 25		ဥ	Technetium 43	186	Re	Rhenium 75				144
11 BB BB BB BB BB BB BB											52	ဝံ	Chromium 24	96	Mo	Molybdenum 42	184	>	Tungsten 74				141
11 BB BB BB BB BB BB BB											51	>	Vanadium 23	93		4		<u>ra</u>	Tantalum 73				140
1 1 1 1 1 1 1 1 1 1					Titanium 22 91 Stroomium 40	178	Ξ	Hafnium 72				1											
Beeryllium 9 9 9 9 9 9 9 9 9											45				>	Yttrium 39	139	Гa	Lanthanum 57 *	227	Ac	Actinium 89	
Li Lithium 3 Lithium 3 Lithium 3 Lithium 3 Sodium 11 Sodium 19 85 Rb Rb Rubidium 37 Tabidium 38 Tabidium 37 Tabidium 38 Tabidium 37 Tabidium 38 Tabidi		=			6	Be	Beryllium 4	24	Mg	Magnesium 12	40				Š	Strontium 38	137		Sarium	l	Ra	Radium 88	400
		_			7	=		23	Na	Sodium 11	39	¥	Potassium 19	85	Rb	Rubidium 37	133	S	Caesium 55		ቷ	Francium 87	* 50 74

	my	Dana Cambridge Com
		Papac
Lutetium 71	Lr Lawrencium 103	andric
Yb Ytterbium 70	Nobelium 102	Se. Con
169 Tm Thulium	Md Mendelevium 101	
167 Er Erbium 68	Fm Fermium 100	
165 Ho Holmium 67	Es Einsteinium 99	(r.t.p.).
162 Dy Dysprosium 66	Cf Californium 98	pressure
159 Tb Terbium	BK Berkelium 97	ture and
157 Gd Gadolinium 64	Curium 96	tempera
152 Eu Europium 63	Am Americium 95	¹³ at room
Sm Samarium 62	Pu Plutonium 94	s is 24 dm
Pm Promethium 61	Neptunium	of any ga:
144 Na Neodymium 60	238 U Uranium 92	ne mole c
Pr Praseodymium 59	Pa Protactinium 91	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
140 Ce Cerium 58	232 Th Thorium	The vo

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Inte

The state of the s	W. Papac
IVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS rnational General Certificate of Secondary Education	ambridge.com

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/32

Paper 3 (Extended) May/June 2008

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES

Answer all questions.

A copy of the Periodic Table is printed on page 12.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part questions.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
Total	

1 hour 15 minutes

This document consists of 11 printed pages and 1 blank page.

	each of the following select an element from Period 4, ches the description.	potassium to krypto
(a)	It is a brown liquid at room temperature.	
(b)	It forms a covalent compound with hydrogen having the formula H_2X .	
(c)	A metal that reacts violently with cold water.	
(d)	It has a complete outer energy level.	
(e)	It has oxidation states of 2 and 3 only.	
(f)	It can form an ion of the type X ⁺ .	
(g)	This metal is the catalyst in the Haber Process.	
		[Total: 7]

For iner's

www.PapaCambridge.com (a) Complete the table which gives the names, symbols, relative masses and charges of the three subatomic particles. 2

name	symbol	relative mass	relative charge
electron	e ⁻		
proton		1	
neutron	n		

(b)

	Use	the information in the table to explain the following.	
	(i)	Atoms contain charged particles but they are electrically neutral - they have overall charge.	า๐
			 [2]
	(ii)	Atoms can form negative ions.	
	(,		
			 [2]
		35 - 37 - 37 - 37 - 37 - 37 - 37 - 37 -	[4]
((iii)	Different atoms of the element chlorine are $^{35}_{17}$ C l and $^{37}_{17}$ C l .	
		How are they different?	
		How are they the same?	[2]
((iv)	Scientists are certain that there are no undiscovered elements missing from Periodic Table from hydrogen to lawrencium.	the
			[1]

[3]

[Total: 10]

3	Conner	is	nurified	hv	electroly	/sis
•	COPPOI	10	parmoa	\sim y	CICCLICI	y OlO.

		is purified by electrolysis. mplete the following. e positive electrode (anode) is made from e negative electrode (cathode) is made from	
Cop	oper	is purified by electrolysis.	aCar.
(a)	Cor	mplete the following.	1
	The	e positive electrode (anode) is made from	`
	The	e negative electrode (cathode) is made from	
	The	e electrolyte is aqueous	[3]
(b)	Wri	te an ionic equation for the reaction at the positive electrode (anode).	
	•••••		[2]
(c)	(i)	Give two reasons why copper is used,	
		in electric wiring,	•
			[2]
		in cooking utensils.	
			[2]
	(ii)	Give another use of copper.	
			[1]
		[Tota	l: 10]

- Sulphuric acid is a typical strong acid.
 - (a) Change the equation given into a different format.

(i)	Mg	+	H_2SO_4	\longrightarrow	MgSO ₄	+	H_2
	Cha	ng	e into a	word	equation		

www.PapaCambridge.com [1]

(ii) lithium oxide + sulphuric acid → lithium sulphate + water Change into a symbol equation.

[2]

(iii) $CuCO_3 + 2H^+ \longrightarrow Cu^{2+} + H_2O + CO_2$ Change the ionic equation into a symbol equation.

[2]

(iv) $Na_2CO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + CO_2 + H_2O$ Change into a word equation.

[1]

(b) When sulphuric acid dissolves in water, the following reaction occurs.

 $H_2SO_4 + H_2O \longrightarrow HSO_4^- + H_3O^+$ Explain why water is behaving as a base.

[2]

(c) Sulphuric acid is a strong acid, ethanoic acid is a weak acid. One way of distinguishing between them is to measure their pH. The weaker acid will have the higher pH. Describe another way by which they could be distinguished.

[Total: 10]

5 Carbonyl chloride, $COCl_2$, is a colourless gas. It is made by the following reaction.

 $CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$

www.PapaCambridge.com (a) When the pressure on the equilibrium mixture is increased, the position of equilibrium moves to right.

(i) How does the concentration of each of the three chemicals change?

(ii) Explain why the position of equilibrium moves to right.

(b) Using the information given with the equation, is the forward reaction exothermic or endothermic? Give a reason for your choice.

[2]

(c) Carbonyl chloride reacts with water to form two acidic compounds. Name them.

[2]

(d) The structural formula of carbonyl chloride is given below.

Draw a diagram that shows the arrangement of the valency electrons in one molecule of this covalent compound.

Use x for an electron from a chlorine atom.

Use o for an electron from a carbon atom.

Use ● for an electron from an oxygen atom.

[3]

- Three of the factors that can influence the rate of a chemical reaction are: 6
 - physical state of the reactants
 - light
 - the presence of a catalyst
- www.PapaCambridge.com (a) The first recorded dust explosion was in a flour mill in Italy in 1785. Flour contains carbohydrates. Explosions are very fast exothermic reactions.

(i)	Use the collision theory to explain why the reaction between the particles of flou
	and the oxygen in the air is very fast.

.....

[2]

(ii) Write a word equation for this exothermic reaction.

[1]

The decomposition of silver(I) bromide is the basis of film photography. The equation for this decomposition is:

$$2AgBr \longrightarrow 2Ag + Br_2$$
 white black

(b) This reaction is photochemical.

A piece of white paper was coated with silver(I) bromide and the following experiment was carried out.

some time later with the initially card and paper removed

silver(I) bromide

Explain the results.

www.PapaCambridge.com (c) The fermentation of glucose is catalysed by enzymes from yeast. Yeast is ad aqueous glucose, the solution starts to bubble and becomes cloudy as more ye cells are formed.

$$C_6H_{12}O_6(aq) \longrightarrow 2C_2H_5OH(aq) + 2CO_2(g)$$

The reaction is exothermic.

Eventually the fermentation stops when the concentration of ethanol is about 12%.

(i)	What is an enzyme?
	[1]
(ii)	Pasteur said that fermentation was respiration in the absence of air. Define respiration.
	[2]
(iii)	On a large scale, the reaction mixture is cooled. Suggest a reason why this is necessary.
	[1]
(iv)	Why does the fermentation stop? Suggest two reasons.
	[2]
(v)	When the fermentation stops, there is a mixture of dilute aqueous ethanol and yeast. Suggest a technique which could be used to remove the cloudiness due to the yeast.
	[1]
	Name another technique which will separate the ethanol from the ethanol / water mixture.
	[1]
	[Total: 1/1]

(a) 25.0 cm³ of aqueous sodium hydroxide is pipetted into a conical flask. A few drops of an indicator are added. Using a burette, dilute sulphuric acid is slowly added until the indicator just changes colour. The volume of acid needed to neutralise the alkali is noted.

25.0 cm³ of sodium hydroxide(aq) concentration 2.64 mol/dm³

Suggest how you would continue the experiment to obtain pure, dry crystals of sodium sulphate-10-water.

.....

(b) Using 25.0 cm³ of aqueous sodium hydroxide, 2.64 mol / dm³, 3.95 g of crystals were obtained. Calculate the percentage yield.

$$2NaOH + H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2O$$

 $Na_2SO_4 + 10H_2O \longrightarrow Na_2SO_4.10H_2O$

Number of moles of NaOH used = Maximum number of moles of Na₂SO₄.10H₂O that could be formed = Mass of one mole of $Na_2SO_4.10H_2O = 322g$ Maximum yield of sodium sulphate-10-water = _____ g Percentage yield = % [4]

[Total: 8]

		reas of the Amazon rain forest are cleared each year to grow soya beans. The down and burnt.
(a)	Wh	y do these activities increase the percentage of carbon dioxide in the atmosphere?
	•••••	[2]
	•••••	[²]
	_	a beans contain all three main food groups. Two of which are protein and pohydrate.
	(i)	What is the third group?
		[1]
	(ii)	Draw the structural formula of a complex carbohydrate such as starch.
		[3]
(iii)	Compare the structure of a protein with that of a synthetic polyamide. The structure of a typical protein is given below.
		-N $-C$ $-N$ $-C$ $-C$ $-C$ $-C$ $-C$ $-C$ $-C$ $-C$
		How are they similar?
		How are they different?

[Total: 9]

[3]

BLANK PAGE

www.PapaCambridge.com

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

DATA SHEET
The Periodic Table of the Elements

								ō	Group									
-	=											≡	≥	>	5		0	
							1 Hydrogen										4 He lium	
7 Lithium	Beryllium	_						1				11 Boron 5	12 C Carbon	14 X Nitrogen 7	16 Oxygen	19 Fluorine	20 Ne Neon	
23 Na Sodium	Mg Magnesium	E										27 A 1 Aluminium 13	28 Si licon 14	31 Phosphorus 15	32 S Suphur	35.5 C1 Chlorine	40 Ar Argon	
39 K Potassium	Calcium	Scandium 21	48 T Titanium	51 V Vanadium 23	Cr Chromium 24	Manganese	56 Fe Iron	59 Cob 27	59 Nickei	64 Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic	79 Se Selenium 34	80 Br Bromine 35	84 Krypton 36	1
Rb Rubidium	Strontium	89 ×	2r Zirconium 40	93 Nb Niobium	96 Mo Molybdenum 42	Tc Technetium 43	Ruthenium 44	Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium	Sn Tin	122 Sb Antimony 51	128 Te Tellurium	127 I lodine 53	131 Xe Xenon 54	2
133 CS Caesium 55	137 Ba Barium 56	139 La Lanthanum 57	178 Hf Hafnium * 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 Ir Iridium 77	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury 80	204 T 1 Thallium	207 Pb Lead	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Radon 86	
Fr Francium	226 Rad ium 88	Actinium Actinium Actinium					-											
-711	*58-71 Lanthanoid serie	*58-71 Lanthanoid series 190-103 Actinoid series	1	140 Ce Cerium 58	Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium	173 Yb Ytterbium 70	Lu Lutetium	
Key	a ×	 a = relative atomic mass X = atomic symbol b = proton (atomic) number 	nic mass lbol nic) number	232 Th Thorium 90	Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium	Bk Berkelium 97	Californium	ES Einsteinium 99	Fm Fermium 100	Md Mendelevium 101	Nobelium	Lr Lawrencium 103	www.
				The vc	olume of c	one mole	of any ga	as is 24 d	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).	m temper:	ature and	pressure	(r.t.p.).			S. COM	Morida	Dana Cambridge Com
														ļ				

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).