www.PapaCambridge.com

Location Entry Codes

As part of CIE's continual commitment to maintaining best practice in assessment, CIE uses different variants of some question papers for our most popular assessments with large and widespread candidature. The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions is unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiners' Reports that are available.

Question Paper

Introduction First variant Question Paper Second variant Question Paper

Mark Scheme

Introduction
First variant Mark Scheme
Second variant Mark Scheme

Principal Examiner's Report

Report
Introduction
First variant Principal Examiner's Report
Second variant Principal Examiner's Report

Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

The titles for the variant items should correspond with the table above, so that at the top of the first page of the relevant part of the document and on the header, it has the words:

• First variant Question Paper / Mark Scheme / Principal Examiner's Report

or

Second variant Question Paper / Mark Scheme / Principal Examiner's Report

as appropriate.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

m	A. Danas
IVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS rnational General Certificate of Secondary Education	ambridge con
	13

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY

0620/31

1 hour 15 minutes

Paper 3 (Extended)

October/November 2008

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES

Answer all questions.

A copy of the Periodic Table is printed on page 12.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part questions.

	For Exam	iner's Use
t	1	
	2	
	3	
	4	
	5	
	6	
	7	
	Total	

This document consists of 12 printed pages.

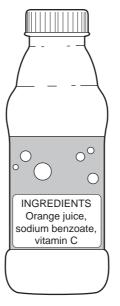
HANNA PARA CAMBRIDA For iner's

gas	test for gas
ammonia	
	bleaches damp litmus paper
hydrogen	
	relights a glowing splint
	turns limewater milky

[Total: 5]

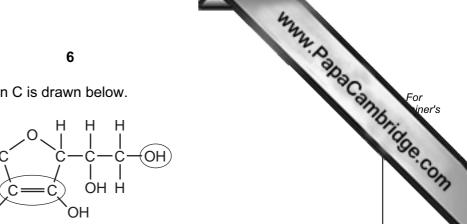
- 2 There are three types of giant structure – ionic, metallic and macromolecular.
- www.PapaCambridge.com (a) Sodium nitride is an ionic compound. Draw a diagram that shows the formula of the compound, the charges on the ions and the arrangement of the valency electrons around the negative ion.

Use x to represent an electron from a sodium atom. Use o to represent an electron from a nitrogen atom.


			[3]
(b)	(i)	Describe metallic bonding.	
			[3]
	(ii)	Use the above ideas to explain why	
		metals are good conductors of electricity,	
			[1]
		metals are malleable.	
			[2]
(c)	Silio	con(IV) oxide has a macromolecular structure.	
	(i)	Describe the structure of silicon(IV) oxide (a diagram is not acceptable).	
			[3]
			ادا
	(ii)	Diamond has a similar structure and consequently similar properties. Give two physical properties common to both diamond and silicon(IV) oxide.	
			[2]
		[Total:	14]

[Total: 13]

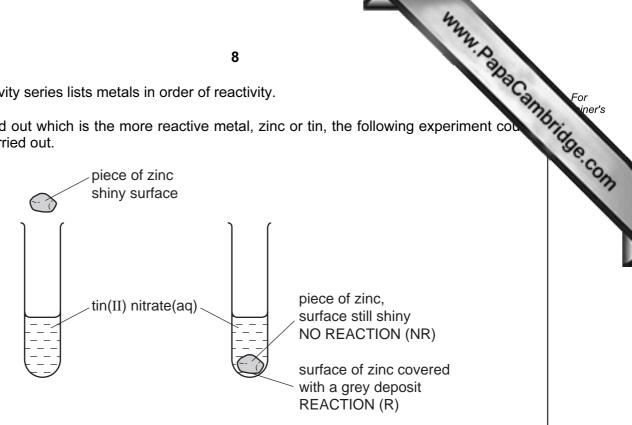
- 3 Steel is an alloy made from impure iron.
 - (a) Both iron and steel rust. The formula for rust is $Fe_2O_3.2H_2O.$ It is hydrated iron(III) oxide.


		the state of the s	
		4	
Ste	el is	an alloy made from impure iron.	aCar
(a)		an alloy made from impure iron. In iron and steel rust. The formula for rust is Fe ₂ O ₃ .2H ₂ O. In hydrated iron(III) oxide. Name the two substances that must be present for rusting to occur.	139
	(i)	Name the two substances that must be present for rusting to occur.	
			[2]
	(ii)	Painting and coating with grease are two methods of preventing iron or steel rusting. Give two other methods.	from
			[2]
			ا ا
(b)	(i)	Name a reagent that can reduce iron(III) oxide to iron.	
			[1]
	(ii)	Write a symbol equation for the reduction of iron(III) oxide, Fe ₂ O ₃ , to iron.	
			[2]
(c)	(i)	Calculate the mass of one mole of Fe ₂ O ₃ .2H ₂ O.	
			[1]
	(ii)	Use your answer to (i) to calculate the percentage of iron in rust.	
			[2]
(d)		from the blast furnace is impure. Two of the impurities are carbon and sil se are removed by blowing oxygen through the molten iron and adding cal le.	
	(i)	Explain how the addition of oxygen removes carbon.	
			[1]
	(ii)	Explain how the addition of oxygen and calcium oxide removes silicon.	
			[2]

www.PapaCambridge.com Across the world, food safety agencies are investigating the presence of minute trathe toxic hydrocarbon, benzene, in soft drinks. It is formed by the reduction of soci benzoate by vitamin C.

(a)	Sodium	benzoate	is a	salt,	it has	the	formula	C ₆ H ₅ COONa.	lt	can	be	made	by	the
	neutralis	sation of be	enzoi	c acid	by so	dium	hydroxid	de.						

(i)	Deduce the formula of benzoic acid.	
		[1]
(ii)	Write a word equation for the reaction between benzoic acid and sodium hydro	xide.
		[1]
(iii)	Name two other compounds that would react with benzoic acid to form sodium benzoate.	
		[2]
(b) Ber	nzene contains 92.3% of carbon and its relative molecular mass is 78.	
(i)	What is the percentage of hydrogen in benzene?	
		[1]
(ii)	Calculate the ratio of moles of C atoms: moles of H atoms in benzene.	
		[2]
(iii)	Calculate its empirical formula and then its molecular formula.	
	The empirical formula of benzene is	
	The molecular formula of benzene is	[2]


(i)	What is its molecular formula?	
		[1]
(ii)	Name the two functional groups which are circled.	
		[2]
	[Total:	: 12]

aCanne	For iner's
[1]	S. CO.
[1]	
[1]	
[1]	

[2]

[Total: 7]

- 6 The reactivity series lists metals in order of reactivity.
 - (a) To find out which is the more reactive metal, zinc or tin, the following experiment could be carried out.

This experiment could be carried out with other metals and the results recorded in a table. Then the order of reactivity can be deduced.

(i) The order was found to be:

most reactive manganese

zinc tin

silver least reactive

Complete the table of results from which this order was determined.

aqueous	tin	manganese	silver	zinc	
solution	Sn	Mn	Ag	Zn	
tin(II) nitrate		R	NR	R	
manganese(II) nitrate					
silver(I) nitrate					
zinc nitrate					

ii)	Write the ionic equation for the reaction between tin atoms and silver(I) ions.	
		[2]

[3]

VF	or
	iner's
100	

2Ca(NO₃)₂ →

		My My
		9
	(iii)	The following is a redox reaction.
		$Mn + Sn^{2+} \longrightarrow Mn^{2+} + Sn$
		The following is a redox reaction. Mn + Sn ²⁺ → Mn ²⁺ + Sn Indicate on the equation the change which is oxidation. Give a reason for your choice.
		[2]
	(iv)	Explain why experiments of this type cannot be used to find the position of aluminium in the reactivity series.
		[2]
(b)	ions	assium and calcium are very reactive metals at the top of the series. Because their s have different charges, K^+ and Ca^{2+} , their compounds behave differently when sted.
	(i)	Explain why the ions have different charges.
		[2]
	(ii)	Their hydroxides are heated. If the compound decomposes, complete the word equation. If it does not decompose, write "no reaction".
		Potassium hydroxide →
		Calcium hydroxide → [2]
	(iii)	Complete the equations for the decomposition of their nitrates.

2KNO₃ → + _____

[Total: 17]

- 7 The alkanes are generally unreactive. Their reactions include combustion, substitute cracking.

- (a) The complete combustion of an alkane gives carbon dioxide and water.
- www.PapaCambridge.com (i) 10 cm³ of butane is mixed with 100 cm³ of oxygen, which is an excess. The mixture is ignited. What is the volume of unreacted oxygen left and what is the volume of carbon dioxide formed?

$$C_4H_{10}(g) + 6\frac{1}{2}O_2(g) \longrightarrow 4CO_2(g) + 5H_2O(I)$$

	Volume of oxygen left =	cm ³	
	Volume of carbon dioxide formed =	cm ³	[2]
(ii)	Why is the incomplete combustion of any alkane dangerous, part enclosed space?	icularly	in an
			[2]

(b) The equation for a substitution reaction of butane is given below.

$$CH_3-CH_2-CH_2-CH_3 + Cl_2 \longrightarrow CH_3-CH_2-CH_2-CH_2-Cl + HCl$$

(i) Name the organic product.

_ r /	17
- 1.7	,
L	

(ii) This reaction does not need increased temperature or pressure. What is the essential reaction condition?

F 4	
- 17	
 _	-

(iii) Write a different equation for a substitution reaction between butane and chlorine.

[1]

(c)	Alkenes are more reactive and industrially more useful than alkanes.
	They are made by cracking alkanes.

C ₇ H ₁₆ →	CH ₃ -CH=CH ₂	+	CH ₃ -CH ₂ -CH=CH ₂ + H ₂
heptane	propene		but-1-ene

(i) Draw the structural formula of the polymer poly(propene).

		[2]
(ii)	Give the structural formula and name of the alcohol formed when but-1-ene rewith steam.	acts
	name	[1]
	structural formula	
		[1

(iii) Deduce the structural formula of the product formed when propene reacts with

hydrogen chloride.

[1]

[Total: 12]

Anna Range Carriage Son iner's

뿌	The Periodic Table of the Elements
---	------------------------------------

	0	4 He lium	20 N eon	40 Ar Argon	34 pton	131 Xe Xenon	Radon		75 . L
		· T - 2	10	8	36	7. X × 9.	98		175 Lu Lutetium
	II/		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium
			16 Oxygen	32 Sulphur 16	Se Selenium	128 Te Tellurium	Po Polonium 84		169 Tm Thulium
	^		14 N Nitrogen 7	31 Phosphorus		122 Sb Antimony 51			167 Er Erbium
	>			28 Si licon	73 Ge Germanium	119 Sn Tin	207 Pb Lead		165 Ho Holmium
	=		11 Boron 5	27 A1 Aluminium	70 Ga Gallium	115 In Indium	204 T.1 Thallium		162 Dy Dysprosium
						112 Cd Cadmium 48			159 Tb Terbium
						108 Ag Silver 47			157 Gd Gadolinium
dne					59 Nickel	106 Pd Palladium	195 Pt Platinum 78		152 Eu Europium
Group					59 Co balt	Rhodium 45	192 Ir		Samarium
		1 Hydrogen			56 Fe Iron	Ruthenium	190 Os Osmium 76		Pm
			,		Mn Manganese	Tc Technetium 43			Neodymium
					Chromium Chromium 24	96 Mo Molybdenum 42	184 W Tungsten		741 Praseodymium
					51 Vanadium 23	93 Nb Niobium	181 Ta Tantalum		140 Cerium
					48 T Ttanium	2r Zrconium 40	178 Hf Hafnium 72		
					Scandium	89 ×	139 La Lanthanum 57 *	Actinium test	series eries
	=		9 Be Beryllium	24 Mg Magnesium	40 Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	inthanoid cetinoid se
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	85 R b Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58-71 Lanthanoid series 190-103 Actinoid series

*58-7	1 Lanthar	*58-71 Lanthanoid series	140	141	144	1	150	152	157	159	162	165	167	169	173	175	
190-1	03 Actino	190-103 Actinoid series	Cerium 58	Praseodymium 59	Neodymium 60	Promethium	Samarium 62	Eu Europium 63	Gadolinium 64	Tb Terbium 65	Dy Dysprosium 66	Holmium 67	Erbium	Thulium 69	Yb Ytterbium 70	Lu Lutetium 71	
	В	a = relative atomic mass	232		238												
Key	×	X = atomic symbol	드	Ра	>	N Q	Pu	Am	C _m	ਲ	ర	Es	Fm	Md	Š	ئ	42
	q	b = proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Ameridium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103	n
			The vo	The volume of one mole of any gas is 24 dm 3 at room temperature and pressure (r.t.p.).	ne mole	of any ga	s is 24 dn	n ³ at roon	n tempera	ature and	pressure	, (r.t.p.).					Day
)				; ! !	5)))							1	20-
																ana	
															3	Shi	brios
														•	Oc.	1	
															CON		

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

NS RahaCambridge.com

CHEMISTRY Paper 3 (Extended)	0620/32 October/November 2008
CENTRE NUMBER	CANDIDATE NUMBER
NAME CANDIDATE	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES

Answer all questions.

A copy of the Periodic Table is printed on page 12.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part questions.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of 12 printed pages.

For miner's s. Com

gas	test for gas
	turns damp red litmus paper blue
	bleaches damp litmus paper
hydrogen	
oxygen	
carbon dioxide	

[Total: 5]

- 2 There are three types of giant structure – ionic, metallic and macromolecular.
- www.PapaCambridge.com (a) Sodium sulphide is an ionic compound. Draw a diagram that shows the formula of the compound, the charges on the ions and the arrangement of the valency electrons around the negative ion.

Use x to represent an electron from a sodium atom. Use o to represent an electron from a sulphur atom.


			[3]
(b)	(i)	Describe metallic bonding.	
			[3]
	(ii)	Use the above ideas to explain why	
		metals are good conductors of electricity,	
			[1]
		metals are malleable.	
			[2]
(c)	Silie	con(IV) oxide has a macromolecular structure.	
	(i)	Describe the structure of silicon(IV) oxide (a diagram is not acceptable).	
			[3]
	4115		[~]
	(ii)	Diamond has a similar structure and consequently similar properties. Give two physical properties common to both diamond and silicon(IV) oxide.	
			[2]
		[Total:	14]

[Total: 13]

- 3 Steel is an alloy made from impure iron.
 - (a) Both iron and steel rust. The formula for rust is $Fe_2O_3.2H_2O.$ It is hydrated iron(III) oxide.

		The state of the s	
		4	1
Ste	el is	an alloy made from impure iron.	OC.
(a)		an alloy made from impure iron. In iron and steel rust. The formula for rust is Fe ₂ O ₃ .2H ₂ O. hydrated iron(III) oxide. Name the two substances that must be present for rusting to occur.	
	(i)	Name the two substances that must be present for rusting to occur.	
		and	[2]
	(ii)	Painting and coating with grease are two methods of preventing iron or steel rusting. Give two other methods.	from
			 [2]
(b)	(i)	Name a reagent that can reduce iron(III) oxide to iron.	
			[1]
	(ii)	Write a symbol equation for the reduction of iron(III) oxide, Fe ₂ O ₃ , to iron.	
			[2]
(c)	(i)	Calculate the mass of one mole of Fe ₂ O ₃ .2H ₂ O.	
			[1]
	(ii)	Use your answer to (i) to calculate the percentage of water in rust.	
			[2]
(d)		from the blast furnace is impure. Two of the impurities are carbon and silese are removed by blowing oxygen through the molten iron and adding calle.	
	(i)	Explain how the addition of oxygen removes carbon.	
			[1]
	(ii)	Explain how the addition of oxygen and calcium oxide removes silicon.	
			[2]

www.PapaCambridge.com Across the world, food safety agencies are investigating the presence of minute the toxic hydrocarbon, benzene, in soft drinks. It is formed by the reduction of so benzoate by vitamin C.

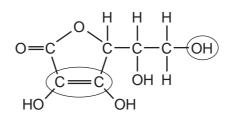
(a)	Sodium benzoate is a salt,	it has th	e formula	C ₆ H ₅ COONa.	It can	be	made	by	the
	neutralisation of benzoic acid	l by sodiu	m hydroxid	de.					

(i)	Deduce the formula of benzoic acid.	
		[1]
(ii)	Write a word equation for the reaction between benzoic acid and sodium hydro	xide
		[1]
(iii)	Name two other compounds that would react with benzoic acid to form sodium benzoate.	
		[2]

- (b) Benzene contains 92.3% of carbon and its relative molecular mass is 78.
 - (i) What is the percentage of hydrogen in benzene?

[1

(ii) Calculate the ratio of moles of C atoms: moles of H atoms in benzene.


[2]

(iii) Calculate its empirical formula and then its molecular formula.

The empirical formula of benzene is

The molecular formula of benzene is [2]

(c) The structural formula of Vitamin C is drawn below.

(i) What is its molecular formula?

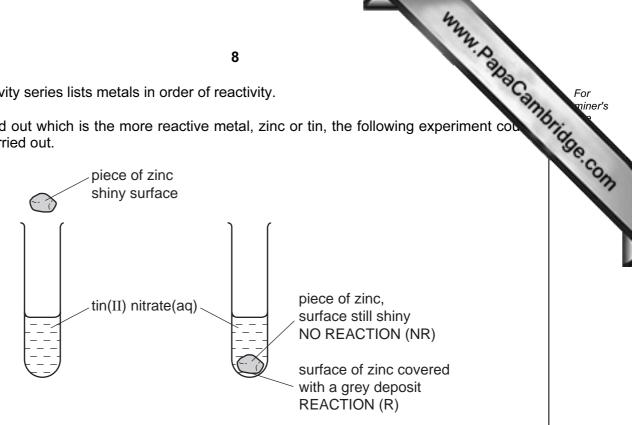
[1]

(ii) Name the two functional groups which are circled.

[2]

[Total: 12]

4	7	vin	er's	;
4		7	•	
1	፠			
	9	0		
7			2	


- 7
 The electrolysis of concentrated aqueous sodium chloride produces three commimportant chemicals; hydrogen, chlorine and sodium hydroxide. 5
 - (a) The ions present are $Na^{+}(aq)$, $H^{+}(aq)$, $Cl^{-}(aq)$ and $OH^{-}(aq)$.

,		
(i)	Complete the ionic equation for the reaction at the negative electrode (cathode).
	+ + _{H₂}	[1]
(ii)	Complete the ionic equation for the reaction at the positive electrode (anode).	
	2C <i>l</i> ⁻	[1]
(iii)	Explain why the solution changes from sodium chloride to sodium hydroxide.	
		[1]
(b) (i)	Why does the water supply industry use chlorine?	
		[1]
(ii)	Name an important chemical that is made from hydrogen.	
		[1]
(iii)	Sodium hydroxide reacts with fats to make soap and glycerine What type of compound are fats?	
		[1]
	What type of the reaction is this?	
		[1]

[Total : 7]

[3]

- 6 The reactivity series lists metals in order of reactivity.
 - (a) To find out which is the more reactive metal, zinc or tin, the following experiment could be carried out.

This experiment could be carried out with other metals and the results recorded in a table. Then the order of reactivity can be deduced.

(i) The order was found to be:

most reactive manganese

zinc tin

silver least reactive

Complete the table of results from which this order was determined.

aqueous	tin	manganese	silver	zinc
solution	Sn	Mn	Ag	Zn
tin(II) nitrate		R	NR	R
manganese(II) nitrate				
silver(I) nitrate				
zinc nitrate				

ii)	Write the equation for the reaction between zinc and silver(I) nitrate.	
		[2]

V	or
-	iner's

	*	
	9	
(iii)	The following is a redox reaction.	SC3
	$Mn + Sn^{2+} \longrightarrow Mn^{2+} + Sn$	13
	The following is a redox reaction. $Mn + Sn^{2+} \longrightarrow Mn^{2+} + Sn$ Indicate on the equation which reagent is the oxidant or oxidizing agent. Give a reason for your choice.	•
		[2]
(iv)	Explain why experiments of this type cannot be used to find the positional control of the position of the control of the cannot be used to find the position aluminium in the reactivity series.	on of
		[2]
ion	tassium and calcium are very reactive metals at the top of the series. Because s have different charges, K^+ and Ca^{2^+} , their compounds behave differently ated.	
(i)	Explain why the ions have different charges.	
		[2]
(ii)	Their hydroxides are heated. If the compound decomposes, complete the word equation. If it does not decompose, write "no reaction".	
	Potassium hydroxide ─►	.
	Calcium hydroxide →	[2]
(iii)	Complete the equations for the decomposition of their nitrates.	
	2KNO₃ → +	
	2Ca(NO ₃) ₂ → + + +	[4]
	ITota	l· 171

[Total: 17]

- 7 The alkanes are generally unreactive. Their reactions include combustion, substitution cracking.

[1]

- (a) The complete combustion of an alkane gives carbon dioxide and water.
- www.PapaCambridge.com (i) 20 cm³ of butane is mixed with 150 cm³ of oxygen, which is an excess. The mixture is ignited. What is the volume of unreacted oxygen left and what is the volume of carbon dioxide formed?

$$C_4H_{10}(g) + 6\frac{1}{2}O_2(g) \longrightarrow 4CO_2(g) + 5H_2O(I)$$

	Volume of oxygen left = cm ³	
	Volume of carbon dioxide formed = cm ³	[2]
(ii)	Why is the incomplete combustion of any alkane dangerous, particularly in enclosed space?	in an
		.
		[2]
The	e equation for a substitution reaction of butane is given below.	
	$CH_3-CH_2-CH_2-CH_3 + Cl_2 \longrightarrow CH_3-CH_2-CH_2-CH_2-Cl + HCl$	
(i)	Name the organic product.	
		[1]
(ii)	This reaction does not need increased temperature or pressure. What is the essential reaction condition?	
		[1]
iii)	Write a different equation for a substitution reaction between butane and chlori	ne.

(b)

(c)	Alkenes are more reactive and industrially more useful than alkanes.
	They are made by cracking alkanes.

C ₇ H ₁₆ →	CH ₃ -CH=CH ₂ +	CH ₃ -CH ₂ -CH=CH ₂ + H ₂
heptane	propene	but-1-ene

(i) Draw the structural formula of the polymer poly(propene).

		[2]
(ii)	Give the structural formula and name of the alcohol formed when propene rewith steam.	acts
	name	[1]
	structural formula	
		[1]
(iii)	Deduce the structural formula of the product formed when but-1-ene reacts hydrogen chloride.	with

[1]

[Total: 12]

For iner's

The Periodic Table of the Elements DATA SHEET

	an ≘	o (t) ∈	_ _	5	- w z	- 5		ه ب ه
0	2 Heliu	9	∞ ∞	36 A 84	131 Xenc Xenc	Rado Rado		175 Lu tetium
II/		19 F luorine	35.5 C1 Chlorine	80 Br Bromine	127 I lodine 53	At Astatine 85		Yb Yb
>		16 Oxygen	32 S Sulphur 16	79 Se Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm
^		14 N Nitrogen 7	31 P Phosphorus 15	1				167 Er
\ <u>\</u>		12 C Carbon 6	28 Si Silicon	73 Ge Germanium 32	Sn Tin 50	207 Pb Lead		165 Holmium
Ξ		11 Boron	27 A1 Aluminium	70 Ga Gallium 31	115 In Indium	204 T.1 Thallium		162 Dy
					112 Cd Cadmium 48	201 Hg Mercury		159 Tb
				64 Copper	108 Ag Silver 47			157 Gd
				59 Nickel	106 Pd Palladium 46			152 Eu
				59 Co Cobalt	103 Rh Rhodium 45	192 Ir Iridium		Samarium
	1 Hydrogen			56 Fe Iron	101 Ru Ruthenium 44	190 OS Osmium 76		Pm
				55 Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodomina
				Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr
				51 V Vanadium 23	93 Niobium 41	181 Ta Tantalum		140 Ce
				48 T	2r Zrconium 40	178 Hf Hafnium		
				Sc Scandium	89 ≺ Yttrium 39	139 La Lanthanum 57 **	AC Actinium 189	series eries
=		9 Be Beryllium	24 Mg Magnesium 12	40 Ca Catcium	Sf Sr Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series
_		7 Li Lithium 3	23 Na Sodium	39 K Potassium 19	Rb Rubidium	133 Cs Caesium 55	Fr Francium 87	*58-71 La
			III IV V VII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VI					

www.papaCambridge.com Erbium Fm Es Californium 98 ರ ਲ **Curium** Am Pu å Ра Cerium C ²³² 28 90 b = proton (atomic) number

a = relative atomic mass X = atomic symbol

Key

Mo

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.