

www.PapaCambridge.com

As part of CIE's continual commitment to maintaining best practice in assessment, CIE has begun to use different variants of some question papers for our most popular assessments with extremely large and widespread candidature, The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions are unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiner's Reports.

Question Paper

Introduction First variant Question Paper Second variant Question Paper

Mark Scheme

Introduction
First variant Mark Scheme
Second variant Mark Scheme

Principal Examiner's Report

Introduction
First variant Principal Examiner's Report
Second variant Principal Examiner's Report

Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

www.PapaCambridge.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme: Teachers' version	Syllabus	1
				IGCSE – May/June 2009	0620	
1	(a)	(i)	basi	c set up – container and chromatography paper	Syllabus 7 dip er 0620	
	sample clearly above level of solvent					
			(orig	inal mark must be shown and not just the line)		Š
			indic	cation that more than one "spot" either on diagram	or as comment [1]
				w MAX [2] for round filter paper with green spot at our more rings	centre	
		(ii)		chromatogram of pure chlorophyll can be implied	[1	
				e position of green spot or same Rf just a green spot	[1]
	(b)	cata	alyst			
				nthesis or chloroplasts emical reaction or needs light		
		carl	bon d	ioxide + water form		
		_		or starch or oxygen NOT sugar REE correct points ignore incorrect answers	[3	1
		,y		LE correct points ignore incorrect unewers	_	_
					[Total: 8]
2	mol	ten p	ootas	sium iodide NOT aqueous	[1]
	-	roge	n		[1	_
	oxy	_	sed u	p or solution becomes more concentrated or sodic	[1 um chloride remains	J
	NO	T no	chan		[1]
				, , ,		1
	cop	•	(and	water)	[1 [1	
			àcid	accept hydrogen sulfate	[1	
				lilute or concentrated potassium bromide ct formulae	[1]
					[Total: 8]
3	(a)	(i)	D		[1]
		(ii)	E		[1]
	((iii)	B or	F	[1]
	((iv)	В		[1]
		(v)	Α		[1]

	Page 3	Mark Scheme: Teachers' version	Syllabus
	. ago c	IGCSE – May/June 2009	0620
	(b) (i)	CF ₂ or CaI ₂ COND next two marks conditional on correct formula C ²⁺ and F ⁻ or Ca ²⁺ and I ⁻ 7× and 1o round F/I NOTE covalent = 0 Ignore electrons around Ca accept arrow notation arrow from electron on calcium atc	Syllabus A-Day er 0620 Om to iodine
	(ii)	high melting point or boiling point conducts when molten or in solution soluble in water brittle correct chemical properties hard Any TWO NOT crystalline solid NOT does not conduct as a solid	[2]
			[Total: 10]
4	(i)	Cu and Pd	[2]
	(ii)	Ba and La	[2]
	(iii)	+2 or 2+ or Ba ²⁺	[1]
	(iv)	Ba or La	[1]
	(v)	it is a transition metal or a d block element	[1]
			[Total: 7]
5	(a) (i)	$Ca^{2+} + 2F^{-} \rightarrow CaF_{2}$ Not balanced ONLY [1] Both species must be correct for first mark. Second mark	[2] is for correct balancing.
	(ii)	Mole ratio Ca ²⁺ : F ⁻ is 1:2 Answer must mention moles accept argument based on charges or <u>number</u> of ions accept 2 moles of NaF react with 1 mole of CaCl ₂ NOT just "2" in equation If fluorine must specify atoms or ions	[1]
	(iii)	to remove traces of solutions or to remove soluble impurities or to remove a named salt sodium chloride or sodium fluoride or calcium chloride To remove impurities is not enough	[1]
	(iv)	to dry (precipitate) or to remove water or to evaporate water NOT to evaporate some of water NOT to crystallise salt	ater [1]

Page 4	Mark Scheme: Teachers' version	Syllabus
-	IGCSE – May/June 2009	0620

(b) T₃(PO₄)₂ allow correct example explain why 8 cm³ react fully comment about mole ratio

Total: 8

- 6 (a) (i) air (liquid) [1] petroleum or crude oil or alkanes or methane or water or steam or steam reforming or suitable aqueous solution e.g. brine or sea water [1] NOTE: cannot crack methane
 - (ii) iron [1]
 - (iii) (as a) fertiliser **or** to make fertilisers **or** to make nitric acid [1]
 - (b) (i) concentrations/macroscopic properties do not change accept amounts stay the same

 NOT no change [1]
 - <u>rate</u> of forward and back reactions equal [1]
 - (ii) it <u>decreases</u> with <u>increase</u> temperature [1] **or** it <u>increases</u> with <u>decrease</u> temperature
 - (c) (i) shows an increase either a line or curve [1] (any decrease = 0)
 - (ii) increase pressure favours the side with lower volume or molecules or moles that is RHS **or** products side ignore any mention of rates [1]

[Total: 10]

7 (a) (total endothermic change = 436 + 242 = +)678 kJ [1]

(total exothermic change = $2 \times 431 = -)862 \text{ kJ}$ [1]

accept correct sign/supplied/absorbed for endo etc. **accept** correct sign/evolved/produced for exo etc.

change for reaction = -184 kJ [1]

not necessary to calculate –184, just show that exo change > than endo ecf allowed provided negative –184 kJ scores all 3 marks

- (b) (i) because it accepts a proton accepts hydrogen ion or H⁺ ONLY [1] proton and H⁺ [2]
 - (ii) hydrogen chloride is a strong acid
 hydrogen fluoride is a weak acid
 weaker or stronger correctly applied for [2]

 [1]

Page 5	Mark Scheme: Teachers' version	Syllabus	
-	IGCSE – May/June 2009	0620	

(iii) hydrogen chloride (aqueous) would have low<u>er</u> pH
OR hydrogen fluoride (aqueous) would have high<u>er</u> pH
If values suggested, not over 7

[Total: 8]

[2]

8	(a) biodegradable or breaks down naturally			
		made from a renewable source or does not use up petroleum		

reduce visual pollution **or** reduces need for landfill sites **or** less danger to wildlife any **TWO** ignore mention of toxic gases

(b) (i) ester

accept polyester or fat or lipid or vegetable oil or carboxylic acid

(ii) acid or carboxylic <u>acid</u> or alkanoic <u>acid</u> [1] alcohol or hydroxyl or alkanol [1] NOT formulae NOT hydroxide

(iii) condensation [1] **COND** because water is formed in reaction

or monomer does not have C=C bond [1]

(c) (i) lactic acid → acrylic acid + water [1]

(ii) add bromine (water) or bromine in an organic solvent remains brown/orange/yellow [1] goes colourless **NOT** clear [1] If mark 1 near miss e.g. bromide allow marks 2 and 3

Colour of reagent must be shown somewhere for [3] otherwise max [2]

OR acidified potassium manganate(VII) purple/pink to colourless

OR alkaline potassium manganate(VII) purple/pink to green **or** purple/pink to brown precipitate

Page 6	Mark Scheme: Teachers' version	Syllabus	er
	IGCSE – May/June 2009	0620	TO TO
(iii) reag	gent ervable result	`	Cambric
if un	able named metal (NOT sodium, lead, any metal be n-named metal [0] result can score [1] rogen evolved or bubbles/effervescence/fizzing	elow magnesium etc.)	Te. COM

insoluble metal oxide colour change or dissolves

any carbonate or bicarbonate gas/carbon dioxide/bubbles/effervescence/fizzing

sodium hydroxide or alkali temperature increase or accept indicator to show neutralisation unspecified base scores [1] only **NOT** alcohol

[Total: 13]

9 (a) 72/24 = 3 and 28/14 = 2[1] [1] Mg_3N_2

accept just formula for [2] even with incorrect or no working **NOT** ecf

- **(b)** $AI_4C_3 + 12H_2O = 4AI(OH)_3 + 3CH_4$ [2] For Al₄C₃ ONLY [1]
- (c) (i) silicon is limiting reagent [1] 0.07 moles of Si and 25/160 = 0.156 moles of Br₂ [1] because $0.14 (2 \times 0.07) < 0.156$ [1] If 80 used to find moles of Br₂ the mark 1 and 3 still available arguments based on masses can be used
 - (ii) 0.07 [1] **NOT** ecf

[Total: 8]

www.PapaCambridge.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teache		Syllabus			
			IGCSE – May/Jun	e 2009	0620			
1	(a) (i) basic set up – contai		c set up – container and chroma	atography paper	Syllabus Told er 0620			
		sample clearly above level of solvent						
	(original mark must be shown and not just the line)							
		indic	ation that more than one "spot"	' either on diagram c	or as comment [1]			
			v MAX [2] for round filter paper or more rings	with green spot at c	eentre			
	(ii)	sam	chromatogram of pure chloroph e position of green spot or sam just a green spot		[1] [1]			
	pho car glu	otosyr otoche bon d cose	othesis or chloroplasts emical reaction or needs light ioxide + water form or starch or oxygen NOT sugar EEE correct points ignore incorre		[3]			
		-	, ,					
					[Total: 8]			
2	molten	lithiur	n chloride NOT aqueous	5	[1]			
	hydroge				[1]			
	oxygen water u		o or solution becomes more co	ncentrated or sodiu	[1] m chloride remains			
	water used up or solution becomes more concentrated or sodium chloride remains NOT no change If products are given as hydrogen, chlorine and sodium hydroxide then 2/3				[1]			
	-		o givoir do riyarogori, ornorino e	ana oodidiii nyaroxio				
	copper oxygen		water)		[1] [1]			
	sulfuric		accept hydrog	gen sulfate	[1]			
			lilute or concentrated potassiun ct formulae	n bromide	[1]			
					[Total: 8]			
3	(a) (i)	D			[1]			
	(ii)	E			[1]			
	(iii)	B or	F		[1]			
	(iv)	В			[1]			
	(v)	Α			[1]			

<u> </u>	Page 3		Mark Scheme: Teachers' version	Syllabus	er
			IGCSE – May/June 2009	0620	30
((b) (i)	6× a NOT	or CaO ID C ²⁺ and A ²⁻ or Ca ²⁺ and O ²⁻ nd 2o round anion E covalent = 0 re electrons around Ca ept arrow notation arrow from electron on calcium a		Pac ambridge
	(ii)	cond solul brittl	c(oxide) or basic property		
		•	TWO crystalline solid NOT does not conduct as a solid		[2]
				I	Total: 10]
4	(i)	Cu a	and Pd		[2]
	(ii)	Ваа	nd La		[2]
	(iii)	+2 o	r 2+ or Ba ²⁺		[1]
	(iv)	Вас	or La		[1]
	(v)	it is a	a transition metal or a d block element		[1]
					[Total: 7]
5 ((a) (i)	Not	+ 3F ⁻ → FeF ₃ balanced ONLY [1] species must be correct for first mark. Second ma	rk is for correct balancir	[2] ng.
	(ii)	Ansv acce acce NOT	e ratio Fe ³⁺ : F ⁻ is 1:3 wer must mention moles ept argument based on charges or <u>number</u> of ions ept 1mole of FeF ₃ reacts with 3 moles of NaF just "3" in equation orine must specify atoms or ions		[1]
	(iii)	impu or so	move traces of solutions or to remove soluble urities or to remove a named salt sodium chloride odium fluoride or iron(III) chloride emove impurities is not enough		[1]
	(iv)		y (precipitate) or to remove water or to evaporate value to evaporate some of water	water	[1]

Page 4	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2009	0620

(b) T₃PO₄ allow correct example explain why 6 cm³ react fully comment about mole ratio

(ii) hydrogen chloride is a strong acid

hydrogen fluoride is a weak acid

weaker or stronger correctly applied for [2]

[Total: 8]

[1] [1]

6	6 (a)		air (liquid) petroleum or crude oil or alkanes or methane or water or steam or steam refor suitable aqueous solution e.g. brine or sea water NOTE: cannot crack methane	[1] ming or [1]
		(ii)	iron	[1]
		(iii)	(as a) fertiliser or to make fertilisers or to make nitric acid	[1]
	(b)	(i)	concentrations/macroscopic properties do not change accept amounts stay the same NOT no change	[1]
			rate of forward and back reactions equal	[1]
		(ii)	it <u>increases</u> with <u>increase</u> pressure or it <u>decreases</u> with <u>decrease</u> pressure	[1]
	(c)	(i)	shows a decrease either a line or curve (any increase = 0)	[1]
		(ii)	increase temperature favours the endothermic change that is LHS or reactants side or so less ammonia at equilibrium accept corresponding exothermic argument	[1] [1]
			[То	otal: 10]
7	(a)	(tot	tal endothermic change = 436 + 158 = +)594 kJ tal exothermic change = 2 × 562 = –)1124 kJ cept correct sign/supplied/absorbed for endo etc.	[1] [1]
			cept correct sign/evolved/produced for exo etc. ange for reaction = –530 kJ	[1]
		not necessary to calculate –530, just show that exo change > than endo ecf allowed provided negative –530 kJ scores all 3 marks		
	(b)	(i)	because it accepts a proton accepts hydrogen ion or H ⁺ ONLY [1] proton and H ⁺ [2]	[2]

Second variant Mark Scheme

Page 5	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2009	0620

(iii) hydrogen chloride (aqueous) would have low<u>er</u> pH
OR hydrogen fluoride (aqueous) would have high<u>er</u> pH
If values suggested, not over 7

[Total: 8]

8	(a)	biodegradable or breaks down naturally
		made from a renewable source or does not use up petroleum

reduce visual pollution **or** reduces need for landfill sites **or** less danger to wildlife any **TWO** [2] ignore mention of toxic gases

(b) (i) ester

accept polyester or fat or lipid or vegetable oil or carboxylic acid

(ii) acid or carboxylic <u>acid</u> or alkanoic <u>acid</u> [1] alcohol or hydroxyl or alkanol [1] NOT formulae NOT hydroxide

(iii) condensation [1] **COND** because water is formed in reaction

or monomer does not have C=C bond [1]

(c) (i) lactic acid → acrylic acid + water [1]

Colour of reagent must be shown somewhere for [3] otherwise max [2]

(ii) add bromine (water) or bromine in an organic solvent remains brown/orange/yellow [1] goes colourless **NOT** clear [1] If mark 1 near miss e.g. bromide allow marks 2 and 3

OR acidified potassium manganate(VII) purple/pink to colourless

OR alkaline potassium manganate(VII) purple/pink to green **or** purple/pink to brown precipitate

Second variant Mark Scheme

NOT ecf

Page 6	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2009	0620
(iii) reac obs	gent ervable result	Co.

suitable named metal (**NOT** sodium, lead etc.) gas/hydrogen/bubbles/effervescence/fizzing if un-named metal [0] result can score [1]

insoluble metal oxide colour change or dissolves

any carbonate gas/carbon dioxide/bubbles/effervescence/fizzing accept bicarbonate

sodium hydroxide or alkali (temperature increase **or** accept indicator to show neutralisation) unspecified base scores [1] only **NOT** alcohol

9 (a) 72/24 = 3 and 28/14 = 2 [1] Mg_3N_2 [1] accept just formula for [2] even with incorrect or no working

- **(b)** $Al_4C_3 + 12H_2O = 4Al(OH)_3 + 3CH_4$ [2] For Al_4C_3 ONLY [1]
- (c) (i) silicon is limiting reagent 0.08 moles of Si and $7.2/38 = 0.189 \text{ moles of F}_2$ [1] because $0.16 (2 \times 0.08) < 0.189$ [1] If 19 used to find moles of F₂ marks 1 and 3 still available arguments based on masses can be used
 - (ii) 0.08 [1] **NOT** ecf

[Total: 8]

[Total: 13]