

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

0620/02 **CHEMISTRY**

Paper 2 May/June 2009

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the periodic table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
Total	

1 hour 15 minutes

This document consists of 15 printed pages and 1 blank page.

(a) Choose from the list of compounds to answer questions (i) to (v). 1

www.PapaCambridge.com hydrogen chloride calcium carbonate carbon dioxide sodium hydroxide iron(III) oxide lead(II) bromide methane

Each compound can be used once, more than once or not at all.

Name the compound which

(i)	is a transition metal compound,	
		[1]
(ii)	produces brown fumes at the anode when electrolysed,	
		[1]
(iii)	is used to manufacture lime,	
		[1]
(iv)	dissolves in water to form an alkaline solution,	
		[1]
(v)	is the main constituent of natural gas.	
		[1]

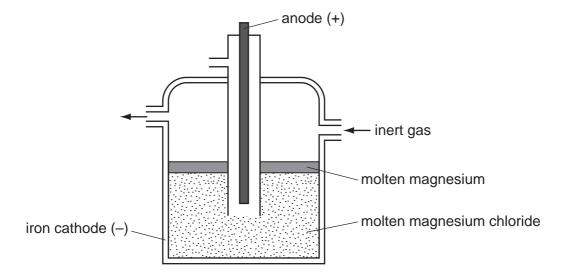
(b)

At a	a high temperature	iron(II	I) oxic	le is redu	ced by	carb	on.		Co
	Fe ₂	O ₃ +	3C		2Fe	+	3CO		
(i)	Explain how the e	quatio	n sho	ws that ire	on(III)	oxide	e is reduced	by carbon.	
									[1]
(ii)	Complete these s	entend	es ab	out the e	xtractio	n of	iron using w	ords from the li	st.
	bauxite	hl	4						
	Dauxile	Die	ast	con	verter		haematite	lime	
	limest		ist		verter and		haematite	lime slag	
		one		Sá	and			slag	
	limest	one		sa	and		by mixing	slag the ore with	ce.
	limest	one		i	and n a		by mixing	slag the ore with furna	

[Total: 10]

The table shows some observations about the reactivity of various metals with 2 hydrochloric acid.

he table shows some oydrochloric acid.	bbservations about the reactivity of various metals with observations	For iner's
metal	observations	ale
calcium	many bubbles produced rapidly with much spitting	OM
copper	no bubbles formed	
iron	a few bubbles produced very slowly	
magnesium	many bubbles produced rapidly with no spitting	


(a) Put these metals in order of their reactive	(a)	Put these	metals in	order of	f their	reactivit
---	-----	-----------	-----------	----------	---------	-----------

most reactive —		→	least reactive	
				[1]

(b) Zinc is between iron and magnesium in its reactivity. Suggest what observations are made about how fast the bubbles are produced when zinc reacts with dilute hydrochloric acid.

[1]

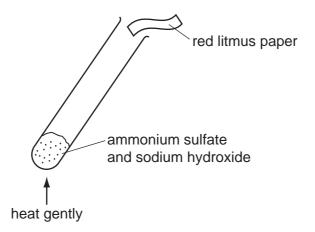
(c) Magnesium is extracted by the electrolysis of molten magnesium chloride.

(i) What information in the diagram suggests that magnesium is less dense than molten magnesium chloride?

(ii)	Suggest wl its oxide wi		to be extracted by	electrolysis rather than by	Carr.
					יניו
(iii)	Suggest w magnesium	=	nert gas is blown	over the surface of the mol	lten
					[1]
(iv)	State the n		element which is ine		
					[1]
ma	agnesium.	gnesium manufact		s is blown over the surface of	the
	carbo	n monoxide	ethene	hydrogen	
		hydroge	en sulfide ı	nethane	
(i)	Draw the s	tructure of ethene	showing all atoms a	nd bonds.	
(i)	Draw the s	tructure of ethene	showing all atoms a	nd bonds.	[1]
(i) (ii)				ing to two specific substances	
	Suggest tv	vo hazards of usin	g coal gas by referr	ing to two specific substances	
	Suggest tw the list.	vo hazards of usin	g coal gas by referr		
	Suggest tw the list. substance	vo hazards of usin	g coal gas by referr	ing to two specific substances	

$$CO + H_2O \rightleftharpoons CO_2 + H_2$$

	Why.	
	6	
	rbon monoxide can be removed from coal gas by mixing it with steam and particles and particles are action of the coal gas by mixing it with steam and particles over a catalyst of iron(III) oxide at 400° C. $CO + H_2O \implies CO_2 + H_2$	Cann
	$CO + H_2O \rightleftharpoons CO_2 + H_2$	
(i)	Write a word equation for this reaction.	
		[1]
(ii)	What does the symbol ⇌ mean?	
		[1]
(iii)	Iron(III) oxide reacts with acids to form a solution containing iron(III) ions. Describe a test for aqueous iron(III) ions.	
	test	
	result	
		[2]


[Total: 13]

	State the name o	of the process u	used to separate the	ese tractions.			
(b)	Name two other	fractions which	are obtained from	petroleum .			
			and				
(c)	Give one use for	the paraffin fra	action.				
(d)			ed from petroleum a ctures are alkanes?				
	Α	В	C			D	
	H H—C—H 	H_C=C	H H H C-	-он	H H—C-	H -C	H -C-
	1.1		п н		Ĥ	Ĥ	Н
			П Н		Ĥ	Ĥ 	н
(e)	Use words from t	the list below to	complete the follow		H 	Ĥ 	н
(e)	ethane	ethene	complete the follow	wing sentence	н Э. о л	Ĥ xygen	
(e)		ethene	complete the follow	wing sentence	H ∋.	н	
(e)	ethane reactiv	ethene ve	complete the follow	wing sentence	e. o. water	н xygen	1
(e)	ethane reactive Alkanes such as	ethene ve	o complete the follow hydrogen unreactive	wing sentence nitrogen	e. o water	xygen	ı y car
	ethane reactive Alkanes such as	ethene ve	hydrogen unreactive are generally to form carbon dic	wing sentence nitrogen	e. o water	xygen	ı y car
	ethane reactive Alkanes such as be burnt in Alkanes are satu What do you und	ethene ve rated hydrocar lerstand by the	hydrogen unreactive are generally to form carbon dic	wing sentence nitrogen	e. or water	xygen	y car

[Total: 11]

This question is about some compounds of nitrogen.

www.PapaCambridge.com A mixture of ammonium sulfate and sodium hydroxide was warmed in a test-tube. The gas was tested with moist red litmus paper.

(a)	State the name of the gas released.	

[1]

(b) State the colour change of the litmus paper.

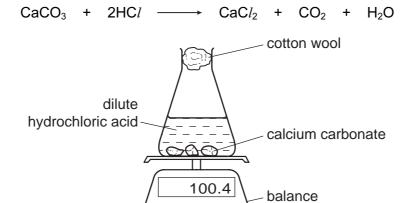
[1]

(c) Complete the word equation for the reaction of ammonium carbonate with hydrochloric acid.

ammonium	+	hydrochloric	 +	 +	
carbonate		acid			
					[3]

- (d) Ammonium salts such as ammonium nitrate, NH₄NO₃ and ammonium chloride NH₄Cl are used as fertilisers.
 - (i) Explain why farmers need to use fertilisers.

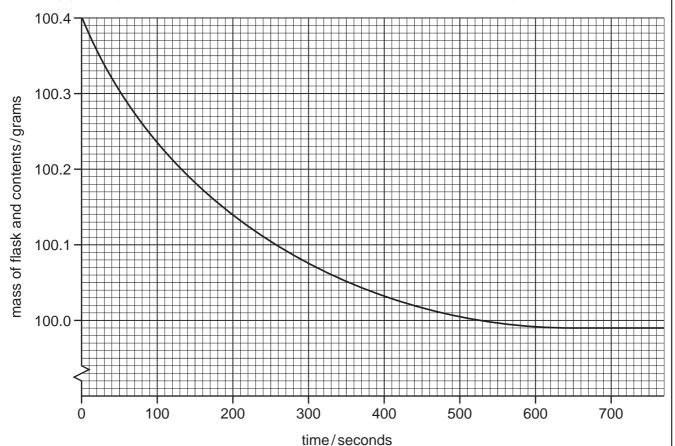
(ii) Explain why ammonium nitrate is a better fertiliser than ammonium chloride.


(iii) Calculate the relative formula mass of ammonium nitrate.

www.PapaCambridge.com

[1]

(e)	When ammonium nitrate is heated nitrogen(I) oxide is given off. Nitrogen(I) oxide relights a glowing splint. Name one other gas which relights a glowing splint.	[1]
(f)	State one harmful effect of nitrogen oxides on the environment.	[1]
	[Total:	10]


www.PapaCambridge.com A student used the apparatus shown below to investigate the rate of reaction of 5 carbonate with dilute hydrochloric acid.

(a)	Use the information in the equation to suggest why the mass of the flask and contents
	decreases with time.

	[1]

(b) The graph shows how the mass of the flask and its contents changes with time.

	(i)	At what time was the reaction just complete?	'di
	(ii)	On the graph, mark with an ${\bf X}$ the point where the speed (rate) of reaction varieties.	vas [1]
	(iii)	The student repeated the experiment but altered the concentration of hydrochloric acid so that it was half the original value. In both experiments calc carbonate was in excess and all other conditions were kept the same.	
		On the graph on page 10, draw a curve to show how the mass of the flask a contents changes with time when hydrochloric acid of half the concentration used.	
(c)	Hov	v does the speed (rate) of this reaction change when	
	(i)	the temperature is increased,	[1]
	(ii)	smaller pieces of calcium carbonate are used?	[1]
(d)	Cor	nplete the following sentence using words from the list.	
(d)		mplete the following sentence using words from the list. ombustion expansion large rapid slow smal	I
(d)	C		l
(d)	c o	ombustion expansion large rapid slow smal	I
(d)	In fl	ombustion expansion large rapid slow smal our mills there is often the risk of an explosion due to the rapid particles which have a very	I
, ,	In fl	ombustion expansion large rapid slow small our mills there is often the risk of an explosion due to the rapid	
, ,	In fl	ombustion expansion large rapid slow small our mills there is often the risk of an explosion due to the rapid	
, ,	In fl	ombustion expansion large rapid slow small our mills there is often the risk of an explosion due to the rapid	
, ,	In fl of th	ombustion expansion large rapid slow small our mills there is often the risk of an explosion due to the rapid	
, ,	In fl of th	ombustion expansion large rapid slow small our mills there is often the risk of an explosion due to the rapid	[3]

[Total: 12]

		12	28
Bro	mine is an element in Group	VII of the Periodic Table	a abacan
(a)	Write the formula for a mole	cule of bromine.	
			[1]
(b)	Complete the diagram bel bromine.	ow to show the arranç	gement of the molecules in liquid
	represents a brom	ine molecule	
			[2]
(c)		n fumes were seen just	in the bottom of a sealed gas jar of above the liquid surface. After one ghout the gas jar.
	T T	ТТ	TEXTEN
	air		
			# / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 /
	liquid		1000 d 2000 2000
	DIOITIINE		<u> </u>
	start	after 2 minutes	after
	Use the kinetic particle theo	ny to explain these shee	ryations
	ose the kinetic particle theo	ry to explain these obse	i vauona.

[3]

(d)	Magnesium salts are colourless but Group VII elements are coloured. An aqueous solution of magnesium bromide reacts with an aqueous solution chlorine.	- OF
	magnesium bromide + chlorine magnesium chloride + bromine	
	State the colour change in this reaction.	
	[2]
(e)	A solution of magnesium bromide will not react with iodine. Explain why there is no reaction.	
	[1]
(f)	The structures of some compounds containing bromine are shown below.	
	A B C D	
	Na ⁺ Br Na ⁺ Br Br Br Br Br Br Zn ²⁺	
	Na ⁺ (Br Na ⁺ (Br Rr)
	(i) Write the simplest formula for the substance with structure A .	
	[1]
	ii) State the name of the substance with structure D .	
		1]
	ii) State the type of bonding within a molecule of structure C .	
		1]
	N/high tage atmost was one gight atmost was 2	
	v) Which two structures are giant structures?	11
	and [1]
	Why does structure A conduct electricity when it is molten?	
	[1]
	[Total: 14	4]

Hyd	drogen chloride can be n	nade by burning hyd	rogen in chlorine.		dy
(a)	Complete the equation	for this reaction.			dh
	H ₂ +		+	IC/	[2]
(b)	Draw a dot and cross of Show all the electrons.		le of hydrogen ch	loride.	
	use o for an electron frouse x for an electron fro				
					[2]
(c)	Hydrochloric acid is for Suggest the pH of hydr Put a ring around the c	ochloric acid.	chloride gas diss	olves in water.	
	pH 1	рН7	рН9	pH 13	[1]
(d)	pH 1 Complete the equation	•	·	•	[1]
(d)	Complete the equation	for the reaction of hy	·	•	[1] [1]
(d) (e)	Complete the equation zinc + hydrocl	for the reaction of hy	ydrochloric acid w zinc chloride +	ith zinc.	[1]
	Complete the equation zinc + hydrocl Describe how dry crys	for the reaction of hy	ydrochloric acid w zinc chloride +	ith zinc.	[1]
	Complete the equation zinc + hydrocl Describe how dry crys	for the reaction of hy	ydrochloric acid w zinc chloride +	ith zinc.	[1]
	Complete the equation zinc + hydrocl Describe how dry crys	for the reaction of hyndric acid ————————————————————————————————————	ydrochloric acid w zinc chloride + e can be obtaine	ith zinc.	[1] f zinc
	Complete the equation zinc + hydrocl Describe how dry crys	for the reaction of hyndric acid ————————————————————————————————————	ydrochloric acid w zinc chloride + e can be obtaine	ith zinced from a solution o	[1] f zinc
	Complete the equation zinc + hydrocl Describe how dry crys	for the reaction of hyndronic acid stals of zinc chlorid	ydrochloric acid w zinc chloride + e can be obtaine	ith zinc.	[1] f zinc
(e)	Complete the equation zinc + hydrock Describe how dry cryst chloride. A student electrolysed State the name of the p	for the reaction of hyndric acid stals of zinc chlorid molten zinc chloride at	ydrochloric acid w zinc chloride + e can be obtaine	ith zinc.	[1] f zinc
(e)	Complete the equation zinc + hydrock Describe how dry cryst chloride. A student electrolysed State the name of the point of the poin	for the reaction of hyndric acid stals of zinc chlorid molten zinc chloride at	ydrochloric acid w zinc chloride + e can be obtaine	ith zinc.	[1] f zinc

BLANK PAGE

www.PapaCambridge.com

The Periodic Table of the Elements **DATA SHEET**

	0	Helium	20 Ne 0n	40 Ar Argon	84 Kr Krypton	131 Xe Xenon	Rn Radon		175 Lu
	I	7	19 F luorine 10	35.5 C1 Chlorine 18	80 Br romine	127 I I I I I I I I I I I I I I I I I I I	At Astatine 86		173 Yb
			6	F P P P	88	53	86		
	5		16 Oxygen 8	32 Sulfur	Selenium	128 Te Tellurium	Po Polonium 84		Tm
	>		14 N Nitrogen 7	31 P Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er
	2		12 C Carbon 6	28 Si Silicon	73 Ge Germanium	S Tin	207 Pb Lead 82		165 Ho
	=		11 Boron 5	27 A1 Aluminium 13		115 In Indium	204 T 1 Thallium		162 Dy
					65 Zn Zinc 30	Cadmium Cad Cadmium 48	201 Hg Mercury 80		159 Tb
					64 Copper	108 Ag Silver 47	197 Au Gold		157 Gd
Group					59 N ickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu
Gro					59 Co Cobalt 27	103 Rh Rhodium 45	1		150 Sm
		T Hydrogen			56 Fe Iron	Ruthenium 44	190 OS Osmium 76		Pm
					55 Wn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		44- D
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr
					51 V Vanadium 23	Niobium 41	181 Ta Tantalum 73		140 Ge
					48 T Trianium	2r Zrconium 40	178 Hf Hafnium		
					Sc Scandium	89 ×	139 La Lanthanum 57 *	227 AC Actinium 89	series
	=		9 Be Berylium 4	24 Mg Magnesium	40 Ca Calcium	Sr Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series
	_		7 Li Lithium 3	23 Na Sodium	39 K	85 Rb Rubidium 37	133 CS Caesium 55	Francium 87	58-71 La

88															
ooi.oo	140	141	144		150	152	157	159	162	165	167	169	173	175	
J Selles	ပီ	ቯ	Š	Pm	Sm	Еn	gq	Тр	ò	운	ш	H	Υb	2	
S D D D D D D D D D D D D D D D D D D D	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64		Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71	
= relative atomic mass	232		238												
= atomic symbol	드	Ра	>	ď	Pu	Am	Cm	ਲ	ర	Es	Fm	Md	8	ئ	2
= proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103	n
	The v	The volume of one mole of any gas is $24\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).	one mole	of any ga	ıs is 24 dn	า ³ at roon	n tempera	ature and	pressure	(r.t.p.).				15	DanaC
														and	\
													Se.	in the same of the	
												1	CON		

Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.