WANT DAY

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 31 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version	Syllabus
			IGCSE – May/June 2010	0620
1	(i)	sulfur		Syllabus Odd Cambridge
	(ii)	iodine		Tige
	(iii)	copper	ignore (II)	[1]
	(iv)	calcium	1	[1]
	(v)	helium		[1]
			me of a compound correct symbols	
2	(i)	chloron	nethane	[1]
			iggest molecular mass / biggest mass of one mole / lowest / heaviest molecule / highest density	its molecules [1]
		accept	atomic mass if correct numerical value given it is the heaviest (gas) / biggest molecule	
			particles or molecules	
	(ii)		dioxide / calcium carbonate	[1]
		not me water		[1]
			chloride / brine / seawater	[1]
	(iii)		orine water	[1]
			ght / UV / heat / high temperature if numerical value / lead tetraethyl	given about [1]
		not wa		
	(iv)		and nitrogen (in air) m fuel, negates mark 1	[1]
		` ,	at high temperatures / lightning / in engine nbustion or exhaust, negates mark 2	[1]
	(v)	2O ₃ →	$3O_2$	[2]
		not bala	anced = [1]	
3	(a)	(i) bubl	oles / effervescence / hydrogen / gas pushes up / lift	ts metal [1]
			s not react with <u>acid</u> / zinc and iron react with <u>acid</u> just unreactive	[1]
		not .	ust unleadilive	
	(b)	(i) with	copper / first experiment	[1]
		(ii) copp	per acts as a <u>catalyst</u>	[1]
	(c)	(i) sma	ller gradient	[1]
			rate is slower	

(ii) same final volume of hydrogen / same level (on graph)

[1]

Page 3 Mark Scheme: Teachers' version Syllabus IGCSE – May/June 2010 0620			may
IGCSE – May/June 2010 0620	Page 3	Mark Scheme: Teachers' version	Syllabus
		IGCSE – May/June 2010	0620

		1000L May/outle 2010	2
(d)	inc fas no t	perature / heat rease temperature – reaction faster particles have more energy / particles move rer / particles collide more frequently / more particles have enough energy to react more excited rept arguments for a decrease in temperature	ambridge 1
	gre gre any	vdered ater surface area ater collision rate / more particles exposed (to acid) two concentration / light / catalyst / pressure	[2]
(a)	(i)	ethanol CH ₃ -CH ₂ -OH	[1] [1]
		propanoic acid CH_3 - CH_2 - $COOH$ independent marking, no ecf $accept \ C_2H_5$ $not-HO$	[1] [1]
	(ii)	type of compound – salt / sodium carboxylate / alkanoate not soap / sodium stearate etc use – soap / cleaning / detergent	[1] [1]
	(iii)	terylene / PET / Dacron / diolen / mylar / crimplene	[1]
(b)) (i)	polyamide / amide / peptide / polypeptide	[1]
	(ii)	correct amide linkage NHCO then CONH cond to mark 1, 2 monomers (different shading in box) cond continuation (to ONE correct linkage)	[1] [1] [1]
		OR nylon 6 only one linkage – NHCO cond only one monomer cond continuation (to correct linkage)	[1] [1] [1]
	(iii)	use locating agent measure distance travelled by sample / travelled by solvent front ${\bf cond}$ this is ${\bf R}_f$ = 0.5 for mark 3, either mark 1 or mark 2 must be awarded	[1] [1] [1]
		accept run a chromatogram of glycine [1] compare with sample same position [1] max [2]	

Page 4	Mark Scheme: Teachers' version	Syllabus	· 6
	IGCSE – May/June 2010	0620	123

				VA .
5	(a)	(i)	macromolecular / giant covalent / giant atomic all atoms held in position / in tetrahedral structure / to four other carbon atoms / <u>all</u> strong bonds	Cambridge
		(ii)	jewellery / drilling / cutting / engraving / cutting edges in scalpels mark first use offered	[1]
		(iii)	layer structure / sheets molecules / ions in layers = [0] layers can slide (over each other)	[1] [1]
		(iv)	lubricant / pencils / electrodes mark first use offered	[1]
	(b)	(i)	4e between carbon and oxygens 2 non-bonding pairs on both oxygens cond correct coding – only scored if marks 1 and 2 awarded ignore O ₂ in atom	[1] [1] [1]
		(ii)	4O around each Si 2Si around each O must refer to diagram not valencies or electron distributions	[1] [1]
		(iii)	SiO_2 has higher mp or bp SiO_2 is a solid, CO_2 is a gas (at rtp) (when both are solids) then SiO_2 is harder has higher density SiO_2 insoluble, CO_2 soluble any two , comparison needed	[2]
6	(a)	con	es equal accentrations do not change / macroscopic properties remain constant accept amounts do not change	[1] [1]
	(b)		dothermic nd favoured by high temperatures	[1] [1]
	(c)	(i)	move to left cond bigger volume / more moles etc do not insist on "gas"	[1] [1]
		(ii)	less yellow solid / more brown liquid accept yellow to brown / less solid more liquid / goes brown	[1]

			2.
Page 5	Mark Scheme: Teachers' version	Syllabus	.03
_	IGCSE – May/June 2010	0620	100
7 (a) a transiti	on element has more than one oxidation state or	valency	Call

- 7 (a) a transition element has more than one oxidation state or valency accept different oxidation states
 - **(b)** by removing oxygen concentration of O₂ decreases prevents the back reaction / equilibrium shifts to right

[1]

(c) oxidation number reduced (from (+) 4 to 0)

accept accepts electrons or accepts four electrons if number given must be 4

- [1]
- (d) low density / lightweight / light propellers / fittings on ships / inert anodes in electrolysis / hip replacements / ship building / chemical plants / cathodic protection / diving equipment
- [1]

[1]

(e) (i) percentage of oxygen = 31.6%

[1]

(ii) calculate the number of moles of atoms for each element

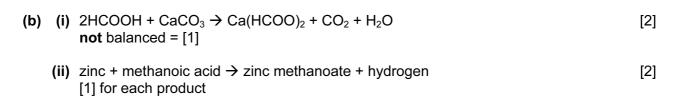
number of moles of Ti = 31.6/48 = 0.66

number of moles of O = 31.6/16 = 1.98 **accept** 2 both correct for one mark

[1]

(iii) the simplest whole number ratio for moles of atoms:

Fe: Ti: O 1 1 3


[1]

(iv) formula is FeTiO₃ accept TiFeO₃ must be whole numbers from (iii) or cancelled numbers from (iii) mark ecf throughout

[1]

		2	
Page 6	Mark Scheme: Teachers' version	Syllabus	2
	IGCSE – May/June 2010	0620	700
			A 7/1

8 (a) same general formula same chemical properties same functional group physical properties vary in predictable way common methods of preparation consecutive members differ by CH₂ any two mark first two ignore others unless it contradicts a point which has been awarded a mark

[2]

(iii) protected by <u>oxide</u> layer [1]

(c)	butanoic acid	[1]
` ,	CH ₃ -CH ₂ -CH ₂ -COOH / C ₄ H ₈ O ₂ / C ₃ H ₇ COOH / C ₄ H ₇ OOH	i 1 i
	C ₂ H ₄ O	[1]
	mark ecf to molecular formula	