UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papaCambridge.com MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		Mark Scheme: Teachers' version	Syllabus	
		IGCSE – October/November 2010	0620	No.
(a) (i)		same number of protons and electrons		abaCambrid
(ii) a	all have the same number of protons / same protor	n number / same atomic nu	umber
(i		more electrons than protons number of protons and electrons not equal ONLY [[2]
(i		same number of protons (and electrons) / same pro different number of neutrons / different mass numb		c number[1] [1]
(b)	(i) 2	2 + 8 + 5		[1]
(ii) :	3/5		[1]
(i		non-metal because it accepts electrons / needs 3e to complete outer energy level / because it is in Group V or 5e in outer shell note need both non-metal and reason for [1]		[1]
				[Total: 9]
(a)		harder / stronger / any sensible suggestion which r e.g. stays sharp longer / cuts better / more corrosic		for purpose [1]
(ii) z	zinc		[1]
(b)	(i)	lattice		[1]
(1	regular pattern of one type of atom with different atom interspersed can show the difference – size, shading, label etc.		[1] [1]
(i		can change its shape by force / plastically deform bend etc.	/ can be hammered into	sheets / can [1]
(i	(particles / ions / atoms / layers cond can slide past each other or metallic bond is non-directional particles can move past each other		[1] [1] [1] [1]

Page 3	Mark Scheme: Teachers' version Syllabu	IS N.D. Y
	IGCSE – October/November 2010 0620	1020
(c) (i)	tin(IV) oxide + carbon \rightarrow tin + carbon dioxide not carbon monoxide as a reductant accept carbon monoxide as a product not tin(IV) accept correct symbol equation	www.papacambridge
(ii)	water carbon dioxide	[1] [1]
(iii)	correct labels for (pure) copper cathode <u>impure copper anode</u> electrolyte copper(II) sulfate / any soluble copper(II) salt / Cu ²⁺ if labels on electrodes reversed [0]	[1] [1] [1]
(iv)	wires / pipes / jewellery / nails / roofing / ammunition / coins / sculpture	cookware / catalyst / [1]
		[Total: 15]
(i)	chemical	[1]
(ii)	from right to left not through salt bridge	[1]
(iii)	$Br_2 + 2e \rightarrow 2Br$ - for Br- as product [1]	[2]
(iv)	<u>reduction</u> because <u>electron gain</u> / because oxidation number decreases need both points	[1]
(v)	Fe ³⁺	[1]
(vi)	any correct discussion of the reactivity of the halogens e.g. the more reactive the halogen the higher the voltage	[1]

[Total: 7]

	ige 4	4 Mark Scheme: Teachers' version Syllabus	No. Y
		IGCSE – October/November 2010 0620	"aC
(a)	(i)	nitrogen 2+5	Sind.
	(ii)	needs three electrons	19
		to complete energy level	MAN, Papa Cambrios
(b)	(i)	expensive metal / iron cheaper / better catalyst	[1]
	(ii)	high pressure favours side with smaller volume / fewer moles this is right hand side / product / ammonia side	[1]
	<i></i>		[1]
	(111)	recycled / sent over catalyst again accept used again	[1]
	(iv)	advantage high yield	[1]
		disadvantage slow reaction rate etc	[1]
			[Total: 9]
(a)			
(a)	(i)	many (simple) molecules form one (large) molecule / monomer mo	lecules form one
(a)	(i)	many (simple) molecules form one (large) molecule / monomer mo polymer molecule	lecules form one [1]
(a)		addition - polymer is the only product	[1]
(a)		polymer molecule addition - polymer is the only product accept - nX \rightarrow Xn condensation polymer and simpler molecules formed	[1] [1]
(a)		polymer molecule addition - polymer is the only product accept - nX \rightarrow Xn	
	(ii)	polymer molecule addition - polymer is the only product accept - nX \rightarrow Xn condensation polymer and simpler molecules formed accept nX \rightarrow Xn + nHC l/H_2O	[1] [1] [1]
	(ii)	polymer molecule addition - polymer is the only product accept - nX \rightarrow Xn condensation polymer and simpler molecules formed	[1] [1]
	(ii) (i)	polymer molecule addition - polymer is the only product accept - nX \rightarrow Xn condensation polymer and simpler molecules formed accept nX \rightarrow Xn + nHCl/H ₂ O $C_{12}H_{26} \rightarrow C_8H_{18} + 2C_2H_4$ / any other correct version ethane and chlorine give range of products	[1] [1] [1]
	(ii) (i)	polymer molecule addition - polymer is the only product accept - nX \rightarrow Xn condensation polymer and simpler molecules formed accept nX \rightarrow Xn + nHC l/H_2O $C_{12}H_{26} \rightarrow C_8H_{18} + 2C_2H_4$ / any other correct version ethane and chlorine give range of products / ethene more readily available than ethane / waste half chlorine as hydrogen chloride	[1] [1] [1]
(b)	(ii) (i) (ii)	polymer molecule addition - polymer is the only product accept - nX \rightarrow Xn condensation polymer and simpler molecules formed accept nX \rightarrow Xn + nHCl/H ₂ O $C_{12}H_{26} \rightarrow C_8H_{18} + 2C_2H_4$ / any other correct version ethane and chlorine give range of products / ethene more readily available than ethane / waste half chlorine as hydrogen chloride / ethene more reactive than ethane	[1] [1] [1] [1]
(b)	(ii) (i) (ii)	polymer molecule addition - polymer is the only product accept - nX \rightarrow Xn condensation polymer and simpler molecules formed accept nX \rightarrow Xn + nHC l/H_2O $C_{12}H_{26} \rightarrow C_8H_{18} + 2C_2H_4$ / any other correct version ethane and chlorine give range of products / ethene more readily available than ethane / waste half chlorine as hydrogen chloride	[1] [1] [1]
(b)	(ii) (i) (ii) (iii)	polymer molecule addition - polymer is the only product accept - nX \rightarrow Xn condensation polymer and simpler molecules formed accept nX \rightarrow Xn + nHCl/H ₂ O $C_{12}H_{26} \rightarrow C_8H_{18} + 2C_2H_4$ / any other correct version ethane and chlorine give range of products / ethene more readily available than ethane / waste half chlorine as hydrogen chloride / ethene more reactive than ethane electrolysis	[1] [1] [1] [1] [1] [1]
(b)	(ii) (i) (ii)	polymer molecule addition - polymer is the only product accept - nX \rightarrow Xn condensation polymer and simpler molecules formed accept nX \rightarrow Xn + nHC1/H ₂ O $C_{12}H_{26} \rightarrow C_8H_{18} + 2C_2H_4$ / any other correct version ethane and chlorine give range of products / ethene more readily available than ethane / waste half chlorine as hydrogen chloride / ethene more reactive than ethane electrolysis aqueous sodium chloride	[1] [1] [1] [1] [1]

	Mark Scheme: Teachers' version Sylla IGCSE – October/November 2010 06	20 Pba
(a) (i)	does not form compounds / does not accept and does not lose shell/has 8e in outer shell / it is a Noble Gas / it is in Group 0/8	abus 20 electrons / has annunic [1]
(ii)	small number of outer electrons / lose electrons then positive large number of outer electrons / gain electrons then negative	[1]
(iii)	any two from nitrogen, oxygen and fluorine accept symbols / molecular formulae	[1]
(b) (i)	zinc / aluminium / lead / tin / chromium	[1]
(ii)	white precipitate	[1]
	precipitate dissolves / colourless solution forms / forms a clear so / soluble in excess	olution [1]
(c) (i)	LiF NF ₃	[1] [1]
(ii)	LiF has higher mp / bp LiF is a (crystalline) solid, NF ₃ is probably a gas / a liquid / LiF is less volatile as liquids only LiF conducts LiF is soluble in water, NF ₃ is not when both solids LiF is harder any two	[2]
	-	
(iii)	LiF is an ionic compound NF_3 is a covalent/molecular compound for stating that one is ionic and the other covalent [1] without specified to the statistic statisti	[1] [1] ecifying which is which
		[Total: 13]
(i)	methane / water vapour / oxides of nitrogen / hydrofluorocarb ozone not sulfur dioxide	ons / perfluorocarbons / [1]
(ii)	living organisms / plants and animals / cells <u>produce energy</u> (from food / glucose / carbohydrates) this forms carbon dioxide (could be in an equation)	[1] [1] [1]
(iii)	when growing the crop removed carbon dioxide from atmospher / crop photosynthesised and used carbon dioxide combustion returned the carbon dioxide	e [1] [1]
(iv)	increased combustion of fossil fuels / named fossil fuel	[1] [1]
	or deforestation less photosynthesis not greater population	[1] [1]

Pa	ge 6	Mark Scheme: Teachers' version	Syllabus Syllabus	
		IGCSE – October/November 2010	0620	
(a)	filter / ce	ntrifuge / decant	Syllabus 0620 e to dry	
(4)) evaporate / heat / boil		On.
		crystallise / cool / let crystals form		1%
	dry crysta	als / dry between filter paper / leave in a warm place	e to dry	
		its own must be a verb		
		e to dryness only marks 1 and 2		
	note if di	scuss residue only mark 1		
(b)	number o	of moles of HCl used = $0.04 \times 2 = 0.08$		
• •	number o	of moles $CoCl_2$ formed = 0.04		
	number o	of moles $CoCl_2.6H_2O$ formed = 0.04		
	mass of o	one mole of $CoCl_2.6H_2O = 238 g$		
		n yield of $CoCl_2.6H_2O = 9.52g$		[4]
	accept 9	•		
		to moles of HCl		
	do not m	nark ecf to integers		
	to show	that cobalt(II) carbonate is in excess		
	number o	of moles of HC <i>l</i> used = 0.08 must use value above	ecf	

mass of one mole of $CoCO_3 = 119g$ number of moles of $CoCO_3$ in 6.0g of cobalt(II) carbonate = 6.0/119 = 0.050 [1] reason why cobalt(II) carbonate is in excess 0.05 > 0.08/2 [1]

[Total: 10]