

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Maridie Co.

*	
N	
5	
S	
٠.	
_	
6	
W	
04	
7	
9	
v	
9	
N	
ľ	
2	

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

CHEMISTRY 0620/52

Paper 5 Practical Test

October/November 2010

1 hour 15 minutes

Candidates answer on the Question Paper.

Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Practical notes are provided on page 8.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
Total		

This document consists of 8 printed pages.

www.PapaCambridge.com You are going to investigate what happens when two different solids, A and B, dis water.

Read all instructions below carefully before starting the experiments.

Instructions

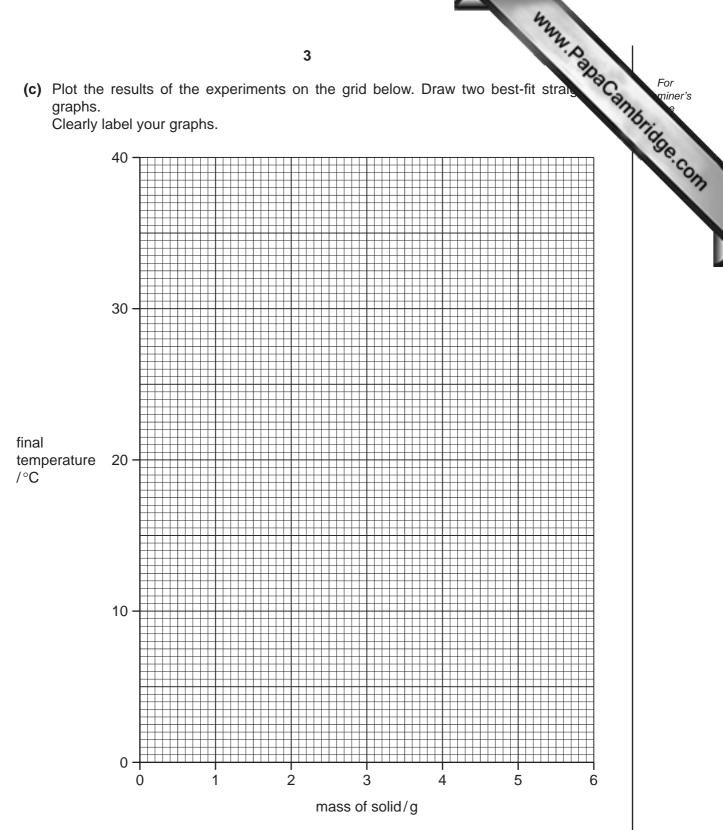
You are going to carry out two sets of experiments.

(a) Experiment 1

Using a measuring cylinder, pour 20 cm³ of distilled water into the polystyrene cup provided. Put the cup into a 250 cm³ beaker for support. Measure the temperature of the water and record it in the table below.

Add 2 g of solid A provided to the cup and stir the mixture with a thermometer. Measure and record the temperature of the solution after one minute. Pour the solution away and rinse the polystyrene cup.

Repeat the experiment using 3g of the solid **A** provided. Record your results in the table. Repeat the experiment using 4g of the solid **A** provided. Record your results in the table. Repeat the experiment using 6 g of the solid **A** provided. Record your results in the table.


mass of solid A/g	initial temperature/°C	final temperature/°C
2		
3		
4		
6		

[3]

(b) Experiment 2

Repeat experiment 1 using 2 g, 3 g and 4 g of solid **B** respectively. Record your results in the table below.

mass of solid B /g	initial temperature/°C	final temperature/°C
2		
3		
4		

For miner's mbridge.com

		The state of the s
		4
(d)	(i)	Use your graph to estimate the temperature of the reaction mixture if 6 g of was added to 20 cm³ of water. Show clearly on the grid how you worked out your answer. [2]
	(ii)	From your graph, work out the temperature of the reaction mixture if 5 g of solid A was added to 20 cm³ of water. Show clearly on the graph how you worked out your answer.
		[2]
(e)	Wha	at type of chemical reaction occurs when solid A dissolves in water?
(f)	-	lain how the temperature changes would differ in the experiments if 40 cm ³ of water used.
		[2]
(g)	Pre	dict the effect of using lumps of solid B in Experiment 2. Explain your answer.
		[2]
(h)		gest one change you could make to the apparatus used in the experiments to obtain be accurate results.
		[1]
		[Total: 21]

 You are provided with a mixture of two soli insoluble. Carry out the following tests on C table. Conclusions must not be written in the table 	ids, C and D . Solid C is water-soluble as and D , recording all of your observations in
tests	observations
Add 15 cm³ of distilled water to the mixture in the boiling tube. Stopper and shake the boiling tube for two minutes. Filter the contents of the tube, keeping the filtrate and the residue for the following tests.	
test on the filtrate	
(a) To about 1 cm³ of the solution, add a few drops of dilute nitric acid and about 1 cm³ of aqueous potassium iodide.	[2]
(b) To about 1 cm³ of the solution add about 1 cm³ of dilute hydrochloric acid.	[1]
(c) To about 1 cm³ of the solution add an equal volume of aqueous sodium hydroxide. Now add a small spatula measure of aluminium powder and warm the mixture carefully. Test any gases given off.	[2]

For miner's

	7 Identify the gas given off in test (c).
(g)	Identify the gas given off in test (c).
(h)	Identify solid C .
(i)	What conclusions can you draw about solid D ?
	[3]
	[Total: 19]

NOTES FOR USE IN QUALITATIVE ANALYSIS

Test for anions

NOTES FOR USE IN QUALITATIVE ANALYSIS Test for anions anion test test result carbonate (CO ₃ ²⁻) add dilute acid effervescence, carbon dioxide		
anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (C l^-) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide (I ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	yellow ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ²⁻⁾ [in solution]	acidify with dilute nitric acid, then aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium (Al³+)	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
ammonium (NH ₄ +)	ammonia produced on warming	_
calcium (Ca ²⁺)	white ppt., insoluble in excess	no ppt., or very slight white ppt.
copper (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test results
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	'pops' with a lighted splint
oxygen (O ₂)	relights a glowing splint

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.