WWW. Pala

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2			Mark Scheme: Teachers' version	Syllabus	
		<u> </u>		IGCSE – May/June 2011	0620
1	(a)	F o	r B	diffusion / fractional distillation	Syllabus 1. Add r 1.
	(b)	Α		simple distillation	Tage of the same o
	(c)	D		chromatography	[1]
	(d)	Е		filtration	[1]
	(e)	С		evaporation	[1]
	(f)	В		<u>fractional</u> distillation	[1]
2	(a)	(i)	not	tosynthesis or a photochemical reaction an example, question requires a process devices which convert light into electricity	[1]
		(ii)		ept battery generator	[1]
	(b)	(i)	corre	ect formula	[1]
			If co corre 6x a do N	d following marks conditional on correct formula valent mark 1 only ect charges and 20 around anion HOT penalise for incorrect coding ore electrons around potassium	[1] [1]
		(ii)	corre	ect formula	[1]
			con 2 bp	nic mark 1 only d and 2 nbp around selenium and 3 nbp around both chlorine atoms	[1] [1]
		(iii)	high cond is so in or hard any note com		ganic solvents, covalent soluble [2]

	(c)	acc acc	e alkali epts a proton epts hydrogen ion / H ⁺ only [1] ton and H ⁺ [2]	bridge
3	(a)	carl this silic / sili silic slac acc not	four max 4 con forms carbon dioxide / carbon monoxide is a gas it escapes / blown out / diffuses con forms silicon(IV) oxide / silica icon(IV) oxide present in impure iron con(IV) oxide reacts with calcium oxide to form slag or calcium silicate g removed from surface ept skimmed, syphoned, poured off tapped max ept correct formula or equations calcium oxide reacts with silicon	[1] [1] [1] [1] [1]
	(b)	(i)	any sensible suggestion – harder/stronger/can be tailored for a specific use/m resistant to corrosion not steel does not rust	nore [1]
		(ii)	mild steel – cars or any vehicle/bicycles/white goods/screws or nails/roof/bridges/tobuildings/ships/pipes/machinery etc.	ols/ [1]
			stainless steel – chemical plants/cooking utensils/jewellery/cutlery/surgical equipment kitchen sinks/pipes/etc.	ent/ [1]
	(c)	(i)	strong attractive forces / strong bonds / bonds hard to break / requires a lot of energy to break bonds not between ions, not between positive and negative ions, not between electrons	[1]
			between positive ions and (negative) electrons / opposite charges attract	[1]
		(ii)	because the <u>layers</u> , <u>lattice or rows</u> of <u>ions/cations</u> accept sheets of ions not atoms / molecules / protons / nuclei	[1]
			can move / slip / slide past each other	[1]
ļ	(a)	(i)	$2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$ not balanced only [1]	[2]
		(ii)	two reagents from named metal(s) more reactive than zinc/carbon monoxide not hydrogen	[2]
		(iii)	they have different boiling points cadmium will distil first then zinc leaving lead/lead distilled last	[1] [1]

Mark Scheme: Teachers' version IGCSE – May/June 2011

Page 3

3

4

Syllabus 0620

	Page 4		Mark Scheme: Teachers' version	Syllabus	l' I
	i ago -	•	IGCSE – May/June 2011	0620	00-
	the a d pre doe	n rate iscuss sence es not	n yield need low temperature would be too slow or uneconomic sion of optimum temperature could score mark 1 an e of catalyst would increase rate (at same temperature)		Da Cambride
	hig	her pr	ressure which would increase yield / rate n enough / high pressure expensive		[1] [1] max [4]
		-	everse arguments rease yield ≡ position of equilibrium to right		
5	(a) (i)	2Li	+ 2HI \rightarrow 2LiI + H ₂		[1]
	(ii)	zinc	carbonate + hydriodic acid $ ightarrow$ zinc iodide + carbon	dioxide + water	[1]
	(iii)	MgC	$O + 2HI \rightarrow MgI_2 + H_2O$		[1]
	` '		1 is redox / Li/2HI reaction ason either oxidation number/state / electron transfe	r	[1] [1]
	(c) with	h hydr	riodic acid – iodine formed / goes <u>dark brown</u> / grey/	black solid	[1]
	not	t purp	le vapour not purple/black solution		
	/ br	own v	robromic acid – bromine formed / goes orange / yel vapour a accept brown for iodine provided bromine is differe		orown / red [1]
	(d) (i)	the r	reaction is exothermic / reaction produces heat/ener ne sodium hydroxide used up/neutralised / reaction l	gy	[1] [1]
	(ii)		ng colder acid / no more heat produced t given in (d)(i) any comments such as "reaction has	s stopped" can gain ma	[1] ark
	(iii)	not for a	/ 1.3 / 1.3333 (mol/dm 3) scores both marks 1.34 correct method – M $_1$ V $_1$ / moles of NaOH = 0.02 an incorrect answer only [1]		[2]

Page 5		<u> </u>	Mark Scheme: Teachers' version	Syllabus	7.0	
	. ago o			IGCSE – May/June 2011	0620	As .
to make butane butene reacts wi accept heat ar			to m bute acce alum	ene reacts with steam/water / hydrated ept heat and catalyst for cracking but if speci ninosilicates / silica / aluminium oxide/alumina / c		
		(ii)	_	cose / sugar changed to alcohol / ethanol		[2]
				ept an unbalanced equation alysed by) enzymes / yeast		[1]
	(b)	CH		c acid 2-CH ₂ -COOH n atoms omitted from ends of bonds, penalise once		[1] [1]
	(c)	(i)	este	er		[1]
		(ii)	C ₆ H	₁₂ O ₂ ore CH ₃ COOC ₄ H ₉		[1]
		(iii)	corre	ect structural formula of butyl ethanoate showing all	bonds	[2]
7	(a)			is magnesium ost reactive or fastest reaction		[1] [1]
		metal B is aluminium cond faster reaction after removal of oxide layer / it would give more hydrogen / a more reactive than zinc				[1] gen / aluminium [1]
	metal C is zinc zinc least reactive NOTE MAX [5] If you encounter dif		leas	st reactive	award the appro	[1] [1] priate marks.
	(b)	for	magn	nesium and zinc same <u>volume</u> of hydrogen		[1]
				both have valency of 2 / 1 mole of metal gives 1 moith 2 moles of acid	ole of hydrogen /	1 mole of metal [1]
				olume for aluminium because its valency is 3 / 1 mn / 1 mole of metal reacts with 3 moles of acid	nole of metal giv	ves 1.5 moles of [1]
		If y	ou en	acounter different reasoning which is correct, please	award the appro	priate marks.
			-	palanced equations onic charges as alternative to valency		

	Page 6	Mark Scheme: Teachers' version IGCSE – May/June 2011	Syllabus 0620	. Pall
8	accept r accept r accept r	- polymer only product / only one product monomer has C=C monomer and polymer have same empirical formula no loss of material in polymerisation one monomer		SCAMBRIDGE:COM
	condens	ation – polymer and water / small molecule formed		[1]

[1]

(b) $-CH_2 - CCl_2$ repeat unit correct **COND** continuation

[1] [1]

(c) CH₂=CHOOCCH₃

[1]

(d) $-OC(CH_2)_4CONH(CH_2)_6NH-$ **COND** amide correct linkage correct repeat units continuation not NH₂ or COOH endings

[1] [1] [1]

[Total: 80]