UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the May/June 2011 question paper

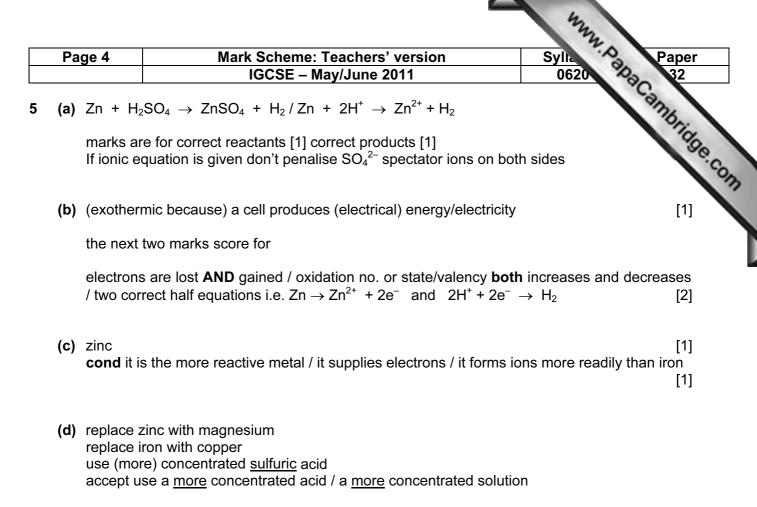
for the guidance of teachers

0620 CHEMISTRY

0620/32

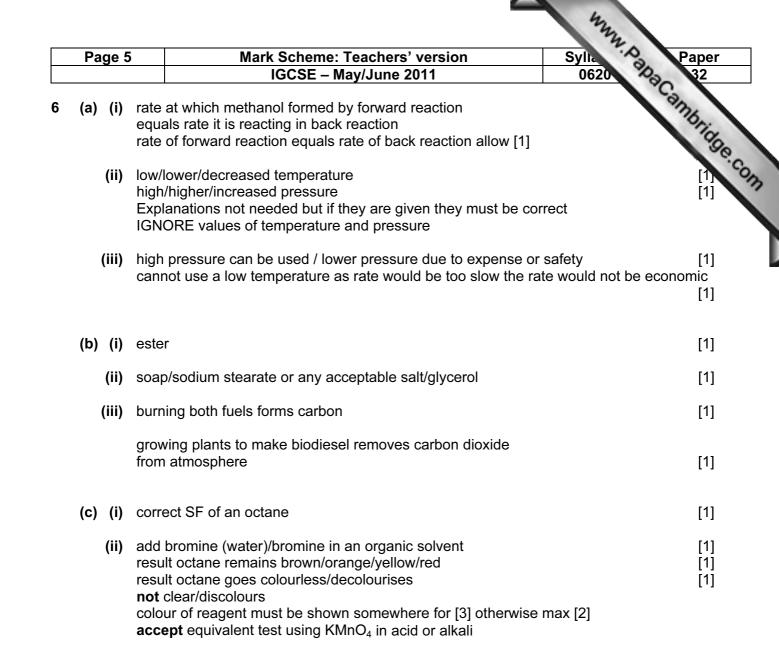
Paper 3 (Extended Theory), maximum raw mark 80

Mark schemes must be read in conjunction with the question papers and the report on the examination.


• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			they want		
	Page 2		Mark Scheme: Teachers' version Sylla Pa	aper	
			IGCSE – May/June 2011 0620	32	
1	((i)	Rb / Sr		
	(i	ii) 🛛	Mark Scheme: Teachers' version Sylla IGCSE – May/June 2011 0620 Rb / Sr I Fe	10ge	
	(ii	ii) I	Fe	1 Com	
	(iv	v)		[1]	
	()	v) :	Si	[1]	
2	(a) (.i)	no reaction	[1]	
		t	Fe + $Sn^{2+} \rightarrow Fe^{2+}$ + $Sn/2Fe$ + $3Sn^{2+} \rightarrow 2Fe^{3+}$ + $3Sn$ for realising that there would be a reaction shown by an attempt to write an equation e.g. writing Fe ₂ Sn etc. allow [1]	[2]	
			no reaction	[1]	
	(i		tin oxide, nitrogen dioxide (accept nitogen(IV) oxide/dinitrogen tetroxide), oxygen All three for two accept correct formulae	[2]	
		:	any two correct products	[1]	
	(b) (i)	tin	[1]	
	(i		$4OH^- \rightarrow O_2 + 2H_2O + 4e^-$ not balanced allow [1]	[2]	
	(ii	i)	sulfuric acid	[1]	
	• •		s is more reactive than iron/steel s less reactive than iron/steel	[1] [1]	
		zinc corrodes/reacts/loses electrons/is oxidised/is anodic/provides sacrificial protect		ion/	
			ns positive ions (in preference to iron or steel) ORA w iron is cathodic for this mark.	[1]	
	р	orefe	/steel corrodes/reacts/rusts/loses electrons/is oxidised/is anodic/forms positive ions rerence to tin). ORA	(in	
	a	llov	w tin is cathodic for this mark	[1]	


Page 3	Mark Scheme: Teachers' version Sylle	Pape
	IGCSE – May/June 2011 0620	32
(a) (i)	<u>concentration</u> of thiosulfate is proportional to volume of thiosulfate solution activity total volume is same in all experiments) / <u>concentration</u> of acid always the same	Pape 32 e [1] [1]
	for comments based on amount / to make experiments fair / comparable allow	[1]
(ii)	240 s	[1]
(iii)	decreases/reaction slower because concentration of thiosulfate decreases frequency/chances/rate of collisions decreases	[1] [1] [1]
	one mark can be scored for less/smaller amount/smaller volume of thiosulf collisions	[:] ate / less
(b) rate	increases with temperature (or at 42 °C) ORA	[1]
•	icles/molecules/ions move faster or gain energy / ORA n't accept reactants or atoms)	[1]
mo	e collisions / ORA	[1]
gre	t mark is for qualification of the collisions) i.e. ater frequency / more per unit time/more often /greater chance/more likely/mor /more effective/more successful/more with activation energy / ORA	e collision [1]
accept 2Fe ₂ O ₃ Fe ₂ O ₃ - C + O ₂	ox equation $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ $+ 3C \rightarrow 4Fe + 3CO_2$ $- 3C \rightarrow 2Fe + 3CO$ $\rightarrow CO_2$ $C \rightarrow 2CO$	[1]
CaO +	d/base equation SiO ₂ \rightarrow CaSiO ₃ O ₃ + SiO ₂ \rightarrow CaSiO ₃ + CO ₂	[1]
carbon this read carbon carbon carbon	ore equations or comments ourns to form carbon dioxide stion is <u>exothermic</u> or <u>produces heat</u> dioxide is <u>reduced</u> to carbon monoxide monoxide <u>reduces</u> hematite to iron <u>reduces</u> hematite to iron he removes silica <u>which is an impurity</u> stag which is a waste product	[3]

to form slag <u>which is a waste product</u> limestone <u>decomposes or</u> symbol/word equation

any two

[2]

Page 6	Mark Scheme: Teachers' version Sylle	Paper
	IGCSE – May/June 2011 0620	10 32
	I 1nbp around phosphorus I 3nbp around each chlorine	Paper 32 [1]
(b) (i) PC <i>l</i> ₃	$_3$ + 3H ₂ O \rightarrow 3HC l + H ₃ PO ₃	[1]
mea hydr color	solutions same concentration sure pH/pH paper/Universal indicator rochloric acid lower pH urs of Universal indicator can be given as red <orange<yellow are precise pH values as long as HCl is lower than H₃PO₃</orange<yellow 	[1] [1] [1]
add mag calci	Acid solutions same concentration magnesium or any named metal above Hydrogen in reactivity series bu nesium ium carbonate or any insoluble carbonate rochloric acid react faster/shorter time	[1] ut not above [1] [1]
mea	acid solutions same concentration sure electrical conductivity rochloric acid better conductor/bulb brighter	[1] [1] [1]
add	acid solutions same concentration sodium thiosulphate rochloric acid forms precipitate faster/less time	[1] [1] [1]
titrat seco	um hydroxide/sodium carbonate tion cond on correct reagent ond mark scores for mention of titration /burette/pipette/indicator. erimental detail not required	[1] [1]
any	named soluble calcium salt e.g. calcium chloride/nitrate/hydroxide	[1]
nrec	pitation/filter/decant/centrifuge	[1]

Page 7	Mark Scheme: Teachers' version Sylla 😪 F	Paper
	IGCSE – May/June 2011 0620	32
(a) (i)	Mark Scheme: Teachers' version Sylk IGCSE – May/June 2011 0620 (to avoid) carbon monoxide formation/so complete combustion occurs/avoid to combustion So that CO2 is produced occurs/avoid to complete combustion occurs/avoid to combustion So that CO2 is produced CO does not dissolve/react with alkali CO2 is acidic	Ibrio
	CO does not dissolve/react with alkali	0
(ii)	CO ₂ is acidic	[1]
(iii)	volume of gaseous hydrocarbon 20 cm^3 volume of oxygen used = 90 cm^3 volume of carbon dioxide formed = 60 cm^3	[1] [1]
	no mark for 20 cm ³ of hydrocarbon.	
(iv)	$2C_{3}H_{6}(g)/2CxHy(g)$ + $9O_{2}(g) \rightarrow 6CO_{2}(g)$ + $6H_{2}O(I)$	[1]
	$OR \ \ C_3H_6(g) \ + \ 9/2O_2(g) \ \rightarrow \ 3CO_2(g) \ + \ 3H_2O(I)$	
	C ₃ H ₆	[1]
	C_3H_6 can be given in the equation for the second mark	
(b) (i)	correct structural or displayed formula of another chlorobutane / dichlorobuta polychlorobutane	ne / [1]
(ii)	light / 200 °C / lead tetraethyl	[1]
(iii)	cracking is the decomposition/breaking down of an alkane/hydrocarbon/petroleum	[1]
	heat/high temperature / Temperature between 450 °C to 800 °C OR catalyst / named catalyst to give a simpler alkane and alkene	[1] [1]
	word equation or equation as example	[1]
	to make polymers / to increase petrol fraction / organic chemicals/petrochemicals/pet	als / [1]