

CANDIDATE NAME

CENTRE

NUMBER

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

NS RanaCambridge.com

*	
∞	
VI	
6	
6	
_	
9	
2	
9	
0	

CHEMISTRY	0620/62

Paper 6 Alternative to Practical

May/June 2012

CANDIDATE

NUMBER

1 hour

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

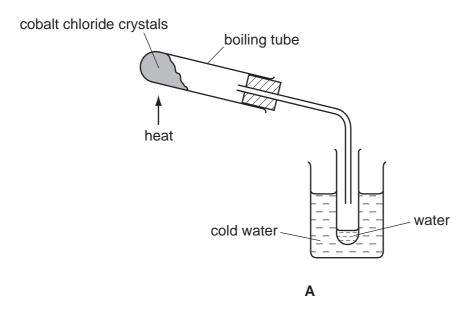
You may use a pencil for any diagrams, graphs or rough working.

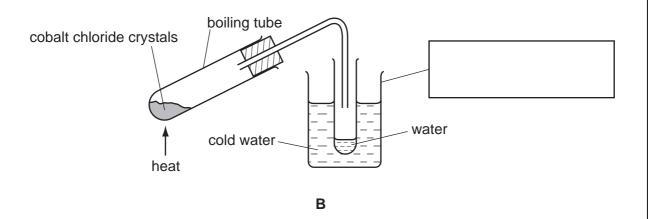
Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

At the end of the examination, fasten all your work securely together.


The number of marks is given in brackets [] at the end of each question or part question.

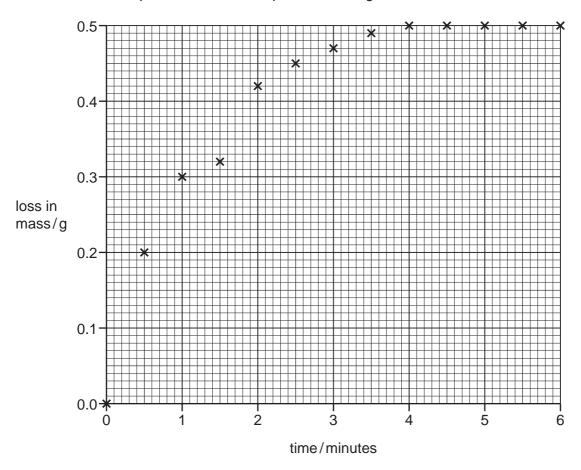

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of 12 printed pages.

www.PapaCambridge.com A student heated red crystals of hydrated cobalt(II) chloride, CoCl₂.6H₂O, to obtain a of water. He used two different sets of apparatus, A and B.

- (a) Complete the box to identify the piece of apparatus labelled.
- (b) The steam could have been condensed more efficiently using a condenser. Draw a labelled diagram of a condenser.

[1]

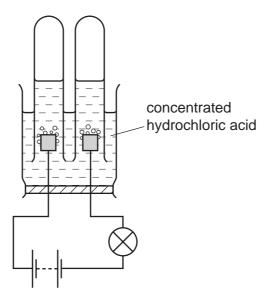

	The state of the s	
	3	· Day
(c)	The colour of the solid remaining in the boiling tube after heating was blue. Predict the effect of adding water to this solid. Explain your answer.	A. PapaCar
	effect	
	explanation	[2]
(d)	Suggest why the boiling tube cracked using set of apparatus B but not set A .	
		[2]
		[Total: 7]

For miner's

An experiment was carried out to measure the speed (rate) of reaction between mag 2 carbonate and excess dilute nitric acid.

www.PapaCambridge.com 50 cm³ of dilute nitric acid was poured into a conical flask and placed on a balance. 1.0 g powdered magnesium carbonate was added to the flask. The mass of the flask and contents decreased as a gas was given off. The loss in mass was recorded every half minute for six minutes.

The results of the experiment are shown plotted on the grid below.


(a)	Draw a smooth line graph through the points.	[1]
(b)	Which point appears to be inaccurate?	
		[1]
(c)	Why does the curve level out? Explain your answer.	
		[2]

(d) On the grid, sketch the graph you would expect if the reaction was repeated using 0.5 g of lumps of magnesium carbonate.

[Total: 6]

s shown For miner's e

3 Electricity was passed through a solution of concentrated hydrochloric acid as shown

Bubbles were observed at both electrodes.

(a)	Give one other expected observation.		
			[1]
(b)	Lab	pel the electrodes.	[1]
(c)	(i)	Name the gas given off at the cathode (negative electrode).	
			[1]
	(ii)	Give a test for this gas.	
		test	
		result	[2]
(d) Suggest why, at the beginning of the electrolysis, no gas was collected at the (positive electrode).		ggest why, at the beginning of the electrolysis, no gas was collected at the ano sitive electrode).	de
			[2]
		[Total:	71

www.PapaCambridge.com A student investigated a reaction between a solid and a liquid. The reaction produced She wanted to know if any of the substances W, X and Y were catalysts for the reaction Firstly she carried out the reaction without any **W**, **X** or **Y**.

Then she repeated the reaction three times adding a small amount of W, X or Y. In each case she timed how long the reaction took to finish. The results are in the table.

substance added	time of reaction/s
none	277
W	266
X	279
Υ	78

(a)		w would the student know when the reaction had finished?	. [1]
(b)		State the effect of each substance on the speed (rate) of the reaction.	
		w	
		x	
		Υ	. [3]
	(ii)	Which substance, W , X or Y , is the best catalyst for this reaction?	
			[1]
(c)	Ηον	w could the student check the reliability of her results?	
			. [2]
		[Tota	al: 7]

A student investigated the temperature changes when two different solids, C and D, dis 5 in water.

Two experiments were carried out.

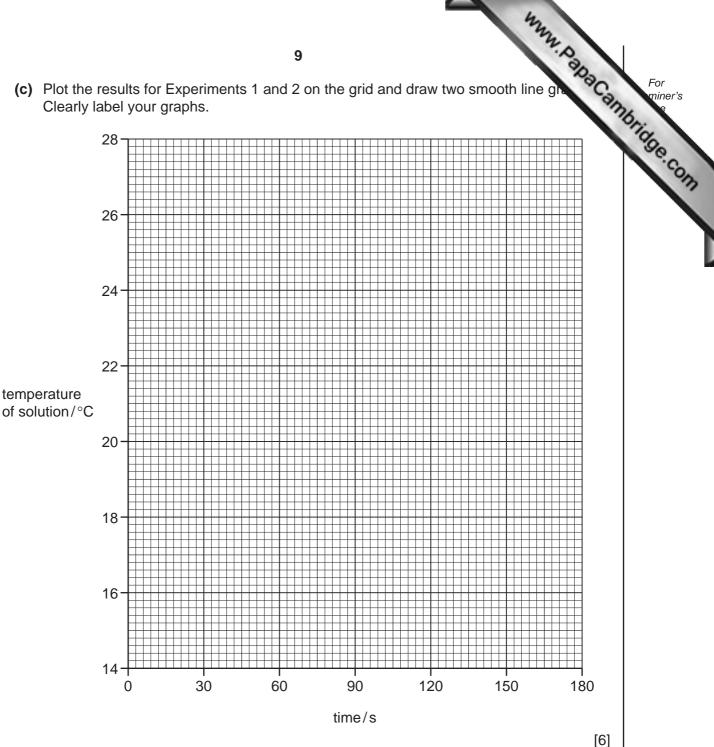
Experiment 1

www.PapaCambridge.com Using a measuring cylinder, 25 cm³ of distilled water was poured into a polystyrene cup. The initial temperature of the water was measured.

Solid **C** was added to the water, the timer started and the mixture stirred with a thermometer. The temperature of the solution was measured every 30 seconds for three minutes.

(a) Use the thermometer diagrams in the table to record the temperatures.

time/s	thermometer diagram	temperature/°C
0	30 - 25 - 20	
30	30	
60		
90		
120	30 25 20	
150	30 25 20	
180	30 1 25 20	


Experiment 2

www.PapaCambridge.com The polystyrene cup was emptied and rinsed with water. Experiment 1 was repeated using solid **D** instead of solid **C**. The temperature of the solution was measured every 30 seconds for three minutes as before.

(b) Use the thermometer diagrams in the table to record the temperatures.

	I	<u> </u>
time/s	thermometer diagram	temperature/°C
0	- 25 - 20 - 15	
30	- 25 - 20 - 15	
60	 25 20 	
90	¹ 25 20 15	
120	- 25 - 20 - 15	
150	- 25 - 20 - 15	
180	- 25 - 20 - 15	

(c) Plot the results for Experiments 1 and 2 on the grid and draw two smooth line grid Clearly label your graphs.

(d) (i) From your graph, deduce the temperature of the solution in Experiment 1 after 15 seconds.

Show clearly on the graph how you worked out your answer.

[2]

(ii) From your graph, deduce how long it takes for the initial temperature of the solution in Experiment 2 to change by 1.5 °C.

Show clearly on the graph how you worked out your answer.

[2]S

(e) What type of change occurs when substance D dissolves in water?	3
Suggest the effect on the results if Experiment 1 was repeated using 50 cm ³ of distille water.	∌d
	•••
	1]
g) Predict the temperature of the solution in Experiment 2 after 1 hour. Explain your answer	∍r.
[2]
(h) When carrying out the experiments what would be the advantage of taking the temperature readings every 15 seconds?	re
[2]
[Total: 2	0]

For miner's

6	etha The in th	noic acid.	was a solid compound and F was a solutions, are in the table. Complete the observation observations	For miner
		tests	observations	
		pearance of solid E .	green powder	
(b)	Sol	id E was heated in a test-tube.	black solid formed	
	The	e gas given off was tested.	limewater turned milky	
(c)	(i)	Solid E was added to dilute sulfuric acid.	effervescence and blue solution formed	
		The solution was divided into two equal portions in test-tubes.		
	(ii)	Excess aqueous sodium hydroxide was added to the first portion of the solution.	pale blue precipitate formed	
	(iii)	Drops of aqueous ammonia were added to the second portion of the solution.	pale blue precipitate formed	
		Excess aqueous ammonia was then added to the mixture.	precipitate dissolved to form a dark blue solution	
tests on liquid F				
(d)	Apr	pearance and smell of liquid F .	appearance	
(e)	pH indicator paper was used to measure the pH of liquid F .		smell [2]	
		11. 1	pH[1]	
	(f)	Identify the gas given off in test (c)(i).		
	(g)	Identify solid E .	[1]	
			[2]	

[Total: 6]

7

Fizzy drinks

www.PapaCambridge.com The bubbles in fizzy drinks are bubbles of carbon dioxide. The carbon dioxide is dissolved in the drink under pressure.

When a bottle of fizzy drink is opened the gas escapes and eventually the drink goes flat. The gas is lost more quickly if the fizzy drink is heated.

(a)	How could the acidity of the fizzy drink be checked?			
(b)	Plan an experiment to find the volume of gas in a bottle of fizzy drink.			
()	You may use common laboratory apparatus.			
	[6]			
	[Total: 7]			