CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the October/November 2012 series

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	ibus 2
IGCSE – October/November 2012 062	20 23
fusion or fractional distillation;	Philippi
ctional distillation;	ubus 20 Rada Cambrid
nple distillation;	
stallisation;	
ration;	
romatography;	
	[Total: 6
become darker;	[1
increase;	[1
	[1
not: brown solid;	[1
same Z / same number of protons; accent: atoms of the same element	[1
different number of neutrons / different nucleon number / different	
	[1
53 protons and 53 electrons;	[1
78 neutrons;	[1
xenon;	[1
F ₃ / F ₃ Br;	[1
	fusion or fractional distillation; ictional distillation; inple distillation; //stallisation; ration; romatography; become darker; increase; black / dark grey; not: brown solid; same Z / same number of protons; accept: atoms of the same element different number of neutrons / different nucleon number / differer number; 53 protons and 53 electrons; 78 neutrons;

[Total: 11]

Page 3	Mark Scheme	Syllabus
	IGCSE – October/November 2012	0620
r c r t	any three from: particles have more energy; move faster; collide more frequently; more successful collisions; accept: atoms or molecules for particles not: electrons not: vibrate more	Syllabus 0620 Syllabus 0620 Office Office Office Syllabus Office
. ,	reaction faster with temperature increase; enzymes denatured / destroyed; not: killed	['
	bigger initial gradient; same final volume of nitrogen;	[' ['
(ii) d	decrease / slows down;	[
(<u>concentration</u> of organic compound decreases; compound used up = [1] or: fewer particles; collision rate decreases;	[2
	carbon monoxide-incomplete combustion; carbon - containing fuel / fossil fuel / petrol;	[' ['
â	oxides of nitrogen - oxygen and nitrogen react; at high temperature / in engine; not : in exhaust	[^ [^
· · ·	carbon monoxide to carbon dioxide; oxides of nitrogen to nitrogen; correct balanced equation;	[' [' ['
		[Total: 17

Pa	age 4		Mark Scheme Syll	labus to r
	J			620 803
	or:	polyr	alent; ner made from monomers; three from:	labus 620 Anacambride
	(•)	high hard brittle insol	mp / bp; ;	[3]
	(ii)		on / diamond / silicon / boron; graphite	[1]
(c)	(i)	sodiu	um hydroxide / any named alkali / reactive metal;	[1]
	(ii)		ed acid; nium oxide;	[1] [1]
				[Total: 8]
(a)	(i)	influe or: turns	of reaction; enced by light / only happens in light; s light into chemical energy = [2] e pt: light is catalyst = [1]	[1] [1]
	(ii)	they appro or: photo corre dioxi anyth effec or: chlor maki	ction of silver halides; are reduced to silver / $2AgCl \rightarrow 2Ag + Cl_2$; opriate importance given; osynthesis; ect comment about chemistry carbon dioxide to carbohydra de to oxygen; hing sensible e.g. its role in the food chain or decrease gree at or oxygen for respiration; rination; ing chloroalkanes; opriate importance given;	
(b)	(i)	-	sure would move position of equilibrium to right / increase y ease pressure favours side with less (gas) molecules / smal	
	(ii)		ease temperature favours endothermic reaction; ess products/reduce yield;	[1] [1]
	(iii)	keep	os rate high / increase rate at lower temperatures;	[1]

				Mary .
	Page	9 5	Mark Scheme	Syllabus Solar
	4	e betw	IGCSE – October/November 2012 orine 1 bp and 3 nbps; een carbon atom and oxygen atom; n oxygen atom;	Syllabus 0620 ITotal: 13
6	(a) (i	salt sug	no acid / peptides; / carboxylate or soap / fatty acid or glycerine / alcoho ars or glucose; ept: named sugar	ol; [1] [1] [1]
	(ii	allo poly	rester; w: named polyester ramide; w: nylon	[1] [1]
	Se –	econd : NHCC	ect amide linkage; amide linkage correctly orientated 9 – followed by – NHCO –; onomers are amino acids not diamines or dicarboxyl	[1] [1]
	u u		/bromine water/aqueous bromine; ated - brown / orange to colourless not: clear d - stays brown / orange	[1] [1] [1]
		fron stay r: acic fron	line potassium manganate(VII); n purple/pink to green / brown; rs purple; lic potassium manganate(VII) n purple/pink to colourless; not: clear rs purple;	
		-		[Total: 10]
7	(a) (i	boili acc	ting point is below 25°C; ng point above 25°C; ept: argument based on actual values e: 25°C is between mp and bp = [2]	[1] [1]
	(ii	•	ntium loses 2e; ur gains 2e;	[1] [1]
	(iii		rogen chloride / hydrochloric acid; ept : sulfurous acid or sulfur dioxide	[1]
	(iv	whie	ten strontium chloride has ions/ionic compound; ch can move; ur chloride has no ions / only molecules / molecular	[1] [1] / covalent; [1]

Page 6	Mark Scheme	Syllabus Syllabus
	IGCSE – October/November 2012	0620 23
b) (i) stro	ntium carbonate does not dissolve / no effervescenc	e:
	e: not just reaction is complete	
(ii) to re	emove excess/unreacted / undissolved strontium ca	Syllabus 0620 ce; rrbonate;
• •	er of crystallisation needed / $6H_2O$ in crystals / would	0,
	ld not get hydrated salt / crystals dehydrate; just to obtain crystals	[
(c) number	of moles of HCl used = $0.05 \times 2 = 0.1$	[
	of moles of SrC l_2 .6 H ₂ O which could be formed. = 0 one mole of SrC l_2 .6H ₂ O is 267 g	-
	al yield of $SrCl_2.6H_2O = 0.05 \times 267 = 13.35g$]
percenta accept:	age yield = 6.4/13.35 × 100 = 47.9% 48%	[
allow: e	cf	
		[Total: 1