CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.PapaCambridge.com

												my		
	Pa	ge 2				Mark S	Scheme			S	yllabus	1.1	2	NC .
					IGCSE -	- Octobe	r/Noven	nber 201	2		0620		Day	
1	(a)	(i) (ii)	Sb; Xe /	/ R·									Co	ambridge.
		` ,		Te / A /	D;									
	((iv)	Sn a	and I / E	and F;									`
		(v)	Sr/	A;										[5]
	(b)	phys niob hard	sical ium der; s	is stronger;	-	mp/bp; hi omparisc	-	nsity						[2]
		che niob com than	mica bium ipour in one	is less re nds have valency	e catalyti v electror	c propert า;	ties; has	ompound more that pare prop	in one ox	xidation	n state;	has moi		[2] otal: 9]
2	(a)	liqui	d;											[1]
	(b)	acc igno	ersibl ept: ore:	le sign; X in equ any com	pounds			symbols s of equa						[1] [1]
	(c)		_	condens evapora		aporisatio	on							[1]
	(d)	•	_	,		•	•	region DE perature	,				[To	[1] [1] otal: 6]
3	(a)	(i)	COrre	rect struc	ture of a	n isomer	ea 2-c	hloroprop	oane.					[1]
•	(ω)		chlo	orine; t / heat /			J.g. 2 0		.a.i.o,					[1] [1]

Page 3				Mark Scheme	Syllabus		
		30 0		IGCSE – October/November 2012	0620		
		(iii)	could or	d produce 2-chloropropane; d produce HC <i>l</i> ; d produce dichloropropanes = [2]	Syllabus 7. Add 7. Odd	Bridge	
	(b)	(i)	yello	silver nitrate / lead nitrate; ow precipitate; e: do not insist on presence of dilute nitric acid		[1] [1]	
		(ii)	prop	panol / propan-1-ol;		[1]	
	(c)	(i)	decr less parti any	ction slower; reased collision rate; bromobutane present / concentration of bromobutar icles;	ne less / less reacting	[2]	
		(ii)	orga	gens $Cl > Br > I$ reactivity / reactivity decreases down in the contract of	_ · · · · · · · · · · · · · · · · · · ·	[1] [1]	
		(iii)	less parti less	three from: energy; icles move slower; collisions / fewer particles have energy to react / fewer rate;	wer successful collisions; [Total:	[3] 15]	
4	(a)	C +	+ O ₂	\rightarrow CO $_2$		[1]	
	(b)	(i)	then or	already formed (from C burning or from CaCO ₃); carbon reacts with carbon dioxide; $CO_2 \rightarrow 2CO = [2]$ If equation not balanced = [1]		[1] [1]	
		(ii)	not b	D_3 + 3CO \rightarrow 2Fe + 3CO ₂ balanced = [1] reduction by carbon		[2]	
	(c)	read CaC or C	cts wi CO₃ + CaO	ve / neutralise silica / silicon dioxide / silicon(IV) oxide ith limestone to form slag / calcium silicate; $-\operatorname{SiO}_2 \to \operatorname{CaSiO}_3 + \operatorname{CO}_2 + \operatorname{SiO}_2 \to \operatorname{CaSiO}_3$ $O_3 \to \operatorname{CaO} + \operatorname{CO}_2$	e / sand;	[1] [1] [1]	

	4	Manta Cata and	Collebon	20
Page 4		Mark Scheme	Syllabus	Q.
		IGCSE – October/November 2012	0620	TO JOS
(d)	(i) galv	vanising / galvanisation / sacrificial protection;		TOPANO.
•	zino zino zino zino zino zino	rificial protection / zinc is sacrificed; c corrodes rather than iron; is oxidised in preference to iron; reacts with oxygen and / water in preference to iron more reactive / electropositive than iron; loses electrons more readily than iron; etrons move on to iron		W. Papa Cambridge
	any	three		[3]
				[Total: 12]
, ,	manufad	ng (wood pulp / silk / straw); cture of sulfuric acid / SO ₃ / in Contact process; ng / sterilising; refrigerant; making dyes; making wine	e; insecticide;	[2]
` '	in air / o or	eat / react sulfur; xygen; eat / roast zinc sulfide or lead sulfide;		[1] [1]
	in air / o	xygen;		
	•	rple / pink; not: red rless; not clear		[1] [1]
` ,	number volume allow: ed for 1.60 If used 2	of moles of $Na_2SO_3 = 3.15/126 = 0.025$ of moles of SO_2 formed = 0.025 of $SO_2 = 0.025 \times 24 = 0.6 \text{ dm}^3/\text{litres or }600 \text{ cm}^3$ of SO_2 [1] only 22.4 max [2] eed correct units for last mark		[1] [1] [1]
		sa sansat anto for fact mark		
				[Total: 9]

5

Page 5		Mark Scheme	Syllabus
		IGCSE – October/November 2012	0620
;	(a) (i) c	orrect arrow from negative terminal of battery or from a	anode;
	fr O	om battery / power supply / cell; om negative electrode of battery to external circuit; r from anode; om iodide ion losing electron or oxidation of anion;	age:com

- (a) (i) correct arrow from negative terminal of battery or from anode;
 - (ii) from battery / power supply / cell; from negative electrode of battery to external circuit; **or** from anode: from iodide ion losing electron **or** oxidation of anion;

7

(a) (i) $C_nH_{2n+1}OH$

- (iii) ions cannot move in solid / ions can move in liquid; [1]
- (b) copper; [1] (changes to) sulfuric acid; [1]
 - hydrogen; [1] (changes to) potassium hydroxide; [1]
- (c) (i) $2H^+ + 2e \rightarrow H_2$ [2] not balanced = [1]
 - (ii) $4OH^{-} \rightarrow O_2 + 2H_2O + 4e$ [1]
 - [1] (iii) water used up;
- (d) it is a cell; [1] hydrogen reacts with oxygen; [1]

this reaction produces energy / is exothermic / produces flow of electrons / changes chemical energy to electrical energy; [1]

[Total: 15]

[1]

- - (ii) 116-17 = 99, 2n+1 = 99, n = 7for any evidence of working out [1] C₇H₁₅OH [1]
 - (iii) 4bps around C; [1] 1 bp on each hydrogen; [1] 2bps and 2nbps on oxygen; [1]
 - (b) (i) increases yield / moves equilibrium to RHS / favours forward reaction; [1] high pressure favours side with smaller number of (gas) molecules; [1]
 - (ii) any two from: higher temperature / catalyst causes faster reaction; comment about compromise conditions to give best rate and yield; at 250°C (lower temp) higher yield / forward reaction favoured;

at 350°C (higher temp) lower yield / back reaction favoured; [3]

Page 6	Mark Scheme	Syllabus	
	IGCSE – October/November 2012	0620	20

(c) (i) methanoic acid; correct SF showing all bonds; accept: -OH

(ii) methyl methanoate;

[Total: 14]