CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.PapaCambridge.com

Page		qe 2	Mark Scheme	Syllabus	r
			IGCSE – October/November 2012	0620	2
1	(a)	Ca / cald	cium;		Cambridge
	(b)	Kr / kryp	oton;		A.
	(c)	Ge / ger	manium;		[1]
	(d)	Ni / nick	el or Cr / chromium;		[1]
	(e)	Br / bron	mine / Br ₂ ;		[1]
	(f)	Se / sele	enium;		[1]
	(g)	Cu / cop	per;		[1]
	(h)	Br / bron	mine / Br ₂ ;		[1]
				I	[Total: 8]
2	(a)	/ ag prod	nufacture of plastics / (solvents for) dry cleaning / m rochemicals / pharmaceuticals / insecticides / dyest ducts / bleach / water treatment / swimming pools / roorganisms or pathogens / sterilisation / disinfectar	uffs / household cleaning / kill bacteria or germs o	l
		` '	etric light bulbs / fluorescent tubes / (inert gas s duction of titanium / inert atmosphere / car headlight	,	/ [1]
		prep mak	nufacture of) polyethene / polyvinyl chloride (PVC) pare) epoxyethane (which is used in the manufacte) ethylene glycol (which is used to prepare Tel ze / or making ethanol (accept making alcohol) / ripo	cture of detergents / (to rylene) / (to make) anti-)
			king) steel / (oxy-acetylene) welding / cutting of me /gen tanks in) hospitals / astronauts / (deep se		
	(b)	liquid air fractiona	r; al distillation;		[1] [1]
					[Total: 6]

			-
Page 3	Mark Scheme	Syllabus	.0
	IGCSE – October/November 2012	0620	123

3 (a) explanation of evaporation e.g. particles (or molecules) with a lot of energy leave to liquid / bromine particles break free from each other / forces or bonds between bromine molecules broken / molecules (in liquid) have weak forces holding them together / weak intermolecular forces / Van der Waals forces between molecules (don't have to be stated as weak) / (weak intermolecular forces alone scores this mark); allow: particles (or molecules) of bromine escape from liquid [1] diffusion / diffuse / movement of particles; [1] explanation of diffusion involving qualified movement of molecules / particles i.e. random movement of molecules / particles move in all directions; [1] **(b)** air more dense / heavier / higher M_r than hydrogen; [1] hydrogen diffuses faster (than air diffuses out); [1] **accept:** diffusion in is faster than out (without naming gases) pressure inside pot is greater (than outside); [1] air less dense / light<u>er / lower M_r than carbon dioxide;</u> [1] air diffuses / moves faster (than carbon dioxide); [1] **accept:** diffusion out is faster than in (without naming gases) pressure inside pot less (than outside); [1] ORA in both parts [Total: 9] [1] (a) (i) zinc mixed with an element(s) or metal(s) or non-metal; (ii) galvanising / baths / coating steel (i.e. description of galvanising) / roofing / sacrificial protection / protection from rusting / electroplating / zinc plating / batteries: [1] (iii) (lattice) positive ions / cations / metal ions / sea of electrons / delocalised or free or mobile or moving electrons; [1] attraction between positive ions and electrons; [1] the layers (of ions) or particles can slide or slip or shift past each other; [1] (iv) different atom / ion / particle of different size; [1] prevents (layers / atoms / ions / particles / molecules) moving / slipping / sliding / shifting; [1] (b) (i) heat with carbon or coke or carbon monoxide; [1] (ii) $ZnO + H_2SO_4 \rightarrow ZnSO_4 + H_2O$ [2] [1] for correct products [1] for correct reactants

Page 4	Mark Scheme	Syllabus	· 78.
_	IGCSE – October/November 2012	0620	100

(iii) zinc (not: ions) more reactive than silver and lead;

zinc displaces both metals / silver and lead produced / ions become atoms / zinc reduces silver ions and lead ions;

(silver and lead) can be removed by filtering / centrifugation / decanting;

an ionic equation; i.e.

$$Zn + 2 Ag^{+} \rightarrow Zn^{2+} + 2Ag \text{ or } Zn + Pb^{2+} \rightarrow Zn^{2+} + Pb$$

allow: any two correct half equations

(iv) cathode labelled carbon / zinc / platinum; [1]

zinc deposited at cathode; [1]

oxygen formed (at anode); [1]

(electrolyte becomes) sulfuric acid / remaining solution contains H⁺ and SO₄²⁻; [1]

[Total: 18]

[1]

5 (a) (i) add bromine water / bromine / aqueous bromine; [1] colourless;

or add potassium manganate(VII) / permanganate; (ignore acid or alkali) [1]

colourless; [1]

(ii) add metal / carbonate / insoluble base / strong alkali **allow:** ammonia with an indicator / use pH meter; [1]

COND: on reagent

metal - hydrogen given off / metal dissolves / effervescence / gas given off / burning splint pops;

carbonate - carbon dioxide given off / effervescence / gas given off / limewater milky;

insoluble base - solution formed / dissolves;

alkali - use of indicator to show neutralisation / temperature increase;

pH meter - gives pH less than 7 [1]

(b) ethyl propenoate; [1]

correct SF all bonds shown:; [2]

allow: [1] for correct displayed ester linkage

Page 5			Mark Scheme	Syllabus	7.0 V	
				IGCSE – October/November 2012	0620	The state of
	(c)	(i)		aber of atoms of each element; ne molecule;		A. PapaCambridge
		(ii)	2;			
		(iii)	C=C	;		[1]
		(iv)	HOO	OC(CH ₃)C=C(CH ₃)COOH		[Total: 12]
6	(a)	(i)		- 2HC l → ZnC l_2 + H ₂ balanced = [1]		[2]
		(ii)		s and 1 nbp around As; each hydrogen atom;		[1] [1]
	(b)	(i)	emp	4/75 =) 1.3 and (2.6/1 =) 2.6; pirical formula AsH ₂ ; e: correct formula with no working = [1]		[1] [1]
		(ii)	As ₂ H	-1 ₄;		[1]
		(iii)	H ₂ As	s-AsH ₂ / AsH ₂ -AsH ₂ ;		[1]
	(c)	(i)	amio	de / peptide;		[1]
		(ii)		ned strong acid / alkali; w: HC <i>l</i> / enzymes		[1]
		(iii)		no acid; w: peptides		[1]
	(d)	(i)	Cu a	and As have more than one oxidation state / valency	· ,	[1]
		(ii)		$^{2+}$ + 2AsO ₄ $^{3-}$ → Cu ₃ (AsO ₄) ₂ er side correct = [1]		[2]
			eillie	er side correct – [1]		[Total: 14]

			~
Page 6	Mark Scheme	Syllabus	.0
	IGCSE – October/November 2012	0620	100

7 (a) (making) fertilisers / nitric acid / nylon / refrigeration / explosives / cleaning products

	<i>(</i> 1.)			'ag
	(b)	wat	ane / named alkane; er / steam;	[1]
		hea	it / catalyst;	[1]
			electrolysis; gest suitable electrolyte; (allow: water)	[1] [1]
		_	rogen at cathode;	[1]
			cracking; ane / named alkane;	[1] [1]
			it or catalyst	[1]
	(c)	anv	five from:	
	(0)	-	er; (rate)	[1]
		moi	re collisions / molecules closer together / more particles per unit volume;	[1]
		•	lisions) more frequent / more often / more chance / more effective or successful isions / more collisions with Ea / increase rate of collisions;	[1]
		_	ner yield / moves (equilibrium) to RHS / more ammonia / to side of products / high ssure favours the reaction with less moles;	[1]
			s moles / molecules / volume on RHS ORA (can be implied in previous nments)	[1]
		_	n pressure means lower temperature can be used to achieve comparable rate is saving energy);	[1]
,	(d)	(i)	endothermic takes in / absorbs / uses / needs / gains energy / heat and	[41]
			exothermic gives out / loses energy / heat;	[1]
		(ii)	2328 (ignore + or –) / 6 × 388 (not evaluated);	[1]
			944 + 1308 / 2252 and endothermic and exothermic in table;	[1]
			2328>2252 or (–) 76 kJ;	[1]
			or energy of products / RHS > reactants / LHS	
			or energy needed to break bonds < energy given out on formation of bonds. [Total	al: 13]

7