

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY

Paper 1 Multiple Choice

0620/11 October/November 2012

45 Minutes

Additional Materials:

Multiple Choice Answer Sheet Soft clean eraser Soft pencil (type B or HB is recommended)

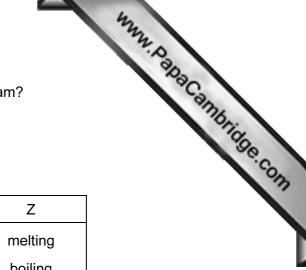
READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers A, B, C and D.


Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the Periodic Table is printed on page 16. You may use a calculator.

This document consists of 15 printed pages and 1 blank page.

- 2
- 1 What are the processes W, X, Y and Z in the following diagram?

$$\begin{array}{ccc} W & X \\ \text{solid} &\rightleftharpoons \text{liquid} &\rightleftharpoons \text{gas} \\ Y & Z \end{array}$$

	W	Х	Y	Z
Α	condensing	boiling	freezing	melting
в	condensing	freezing	melting	boiling
С	melting	boiling	freezing	condensing
D	melting	freezing	condensing	boiling

2 A mixture of sulfur and iron filings needs to be separated. The solubilities of sulfur and iron filings in water and carbon disulfide are shown in the table below.

	solubility in water	solubility in carbon disulfide
sulfur	x	√
iron filings	×	X

What are possible methods of separating the sulfur and iron filings?

	using water	using carbon disulfide	using a magnet
Α	\checkmark	1	x
в	x	\checkmark	\checkmark
С	\checkmark	x	\checkmark
D	×	\checkmark	X

3 Part of the instructions in an experiment reads as follows.

Quickly add $50 \, \text{cm}^3$ of acid.

What is the best piece of apparatus to use?

- A a burette
- B a conical flask
- **C** a measuring cylinder
- D a pipette

www.papaCambridge.com Which statements comparing the properties of electrons, neutrons and protons are con-4

	neutrons and protons are both heavier than electrons	only electrons and neutrons are charged
Α	\checkmark	\checkmark
В	\checkmark	x
С	x	\checkmark
D	×	×

5 Which row gives the number of electrons in the outer electron shell of fluorine and of neon?

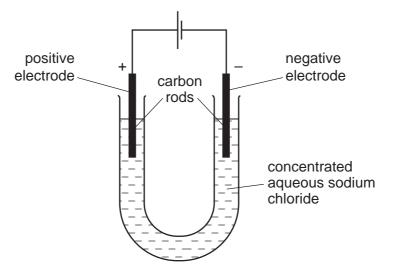
	¹⁹ ₉ F	²⁰ ₁₀ Ne
Α	7	8
в	7	10
С	9	8
D	9	10

In the molecules CH₄, HCl and H₂O, which atoms use **all** of their outer shell electrons in bonding? 6

A C and Cl B C and H C Cl and H D H and O

7 The table shows the electronic structures of four atoms.

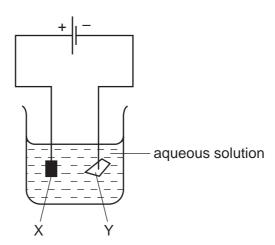
atom	electronic structure
W	2,1
x	2,7
Y	2,8,4
Z	2,8,8


Which two atoms combine to form an ionic compound?

Α	W and X	В	W and Y	С	X and Y	D	X and Z
---	---------	---	---------	---	---------	---	---------

8 A compound has the formula CH₃CO₂H.

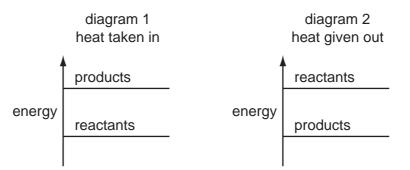
www.papacambridge.com How should the relative molecular mass, M_r , of this compound be calculated?


- 12 + 1 + 16 Α
- **B** 3(12 + 1) + 2(12 + 16) + 1
- **C** $(4 \times 12) + (2 \times 1) + 16$
- **D** $(2 \times 12) + (4 \times 1) + (2 \times 16)$
- The diagram shows the electrolysis of concentrated aqueous sodium chloride. 9

What is produced at each of the electrodes?

	product at cathode	product at anode
Α	hydrogen	chlorine
в	hydrogen	oxygen
С	sodium	chlorine
D	sodium	oxygen

www.papacambridge.com 10 The diagram shows an electrolysis experiment using metals X and Y as electrodes.



One of the metals becomes coated with copper.

Which metal becomes coated and which aqueous solution is used?

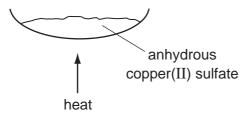
	metal	aqueous solution
Α	Х	CrCl ₃
в	х	CuCl ₂
С	Y	CrCl ₃
D	Y	$CuCl_2$

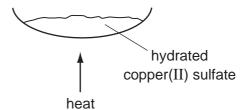
11 The diagrams show the difference in energies of the reactants and products in two types of reaction.

Which diagram and which type of energy change apply to a fuel burning in air?

	diagram	type of energy change
Α	1	endothermic
в	1	exothermic
С	2	endothermic
D	2	exothermic

12 The diagram shows a match.




By striking the match, a chemical reaction takes place.

Which statements about the chemical reaction are correct?

	type of reaction	reason
Α	endothermic	because energy is used to strike the match
в	endothermic	because energy is given out as the match burns
С	exothermic	because energy is used to strike the match
D	exothermic	because energy is given out as the match burns

13 Separate samples of anhydrous and hydrated copper(II) sulfate are heated.

www.papacambridge.com

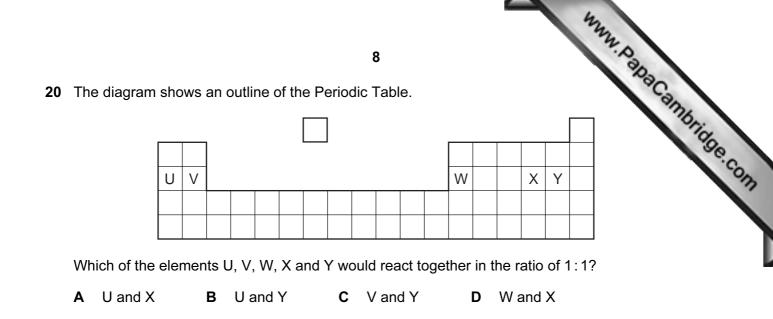
Which shows the correct colour changes?

	anhydrous copper(II) sulfate	hydrated copper(II) sulfate
Α	blue to white	white to blue
в	no change	blue to white
С	white to blue	blue to white
D	white to blue	no change

- **14** Which change is an oxidation?
 - A FeO to Fe₂O₃
 - ${\bm B} \quad {Fe_2O_3} \text{ to FeO} \\$
 - $\boldsymbol{C} \quad H_2O_2 \text{ to } H_2O$
 - **D** H_2O to H_2

6

- www.papacambridge.com 15 Which change does not increase the speed of reaction between zinc and hydrochlor
 - A adding a catalyst
 - B decreasing the particle size of the zinc
 - **C** decreasing the temperature
 - D using more concentrated acid
- 16 Which of these pairs of aqueous ions both react with dilute sulfuric acid to give a visible result?
 - **A** Ba²⁺ and C l^-
 - **B** Ba^{2+} and CO_3^{2-}
 - **C** NH_4^+ and Cl^-
 - **D** NH_4^+ and CO_3^{2-}
- 17 Element X forms an acidic, covalent oxide.


Which row shows how many electrons there could be in the outer shell of an atom of X?

	1	2	6	7
Α	1	1	x	x
в	1	x	1	x
С	x	x	\checkmark	\checkmark
D	x	\checkmark	x	\checkmark

18 Barium hydroxide is an alkali. It reacts with hydrochloric acid.

How does the pH of the hydrochloric acid change as an excess of aqueous barium hydroxide is added?

- The pH decreases from 14 and becomes constant at 7. Α
- В The pH decreases from 14 to about 1.
- С The pH increases from 1 and becomes constant at 7.
- D The pH increases from 1 to about 14.
- **19** A compound is a salt if it
 - A can neutralise an acid.
 - **B** contains more than one element.
 - **C** dissolves in water.
 - **D** is formed when an acid reacts with a base.

21 The element rubidium, Rb, is immediately below potassium in the Periodic Table.

It reacts with bromine to form the compound rubidium bromide.

	type of bond	formula	colour
Α	covalent	RbBr	brown
в	covalent	RbBr ₂	white
С	ionic	RbBr	white
D	ionic	RbBr ₂	brown

Which descriptions of this compound are correct?

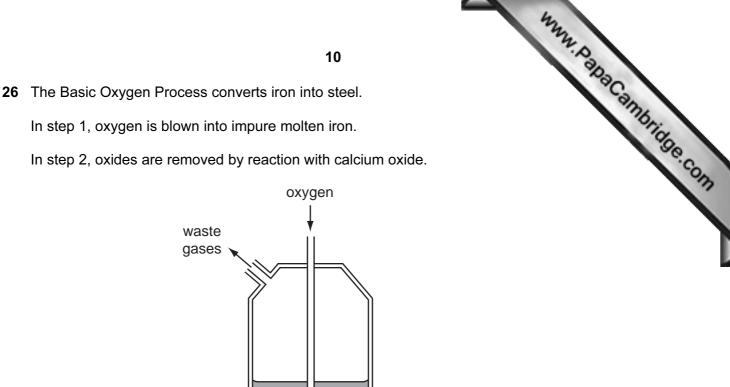
22 The table gives information about four elements.

Which element is a transition metal?

	colour of element	electrical conductivity of element	colour of oxide
Α	black	high	colourless
в	colourless	low	white
С	grey	high	red
D	yellow	low	colourless

- 23 Why are weather balloons filled with helium rather than hydrogen?
 - A Helium is found in air.
 - **B** Helium is less dense than hydrogen.
 - **C** Helium is more dense than hydrogen.
 - **D** Helium is unreactive.
- 24 Some properties of aluminium are listed.
 - 1 It has mechanical strength.
 - 2 It conducts heat.
 - 3 It is resistant to corrosion.
 - 4 It has a low density.

Which properties make aluminium useful for making the bodies of aircraft?

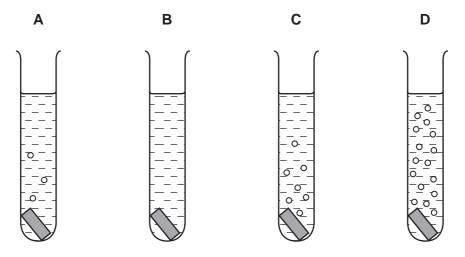

A 1, 2 and 3 **B** 1, 2 and 4 **C** 1, 3 and 4 **D** 2, 3 and 4

25 Brass is used in electrical equipment.

It contains two1..... elements. Together they form2......

Which words correctly complete gaps 1 and 2?

	1	2
Α	metallic	a covalent compound
в	metallic	an alloy
С	non-metallic	a covalent compound
D	non-metallic	an alloy

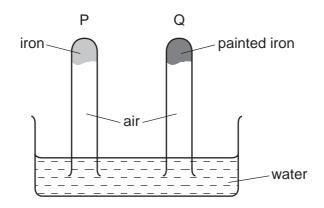

_ molten iron and calcium oxide

Which chemical reaction takes place in step 1 and which type of oxides are removed in step 2?

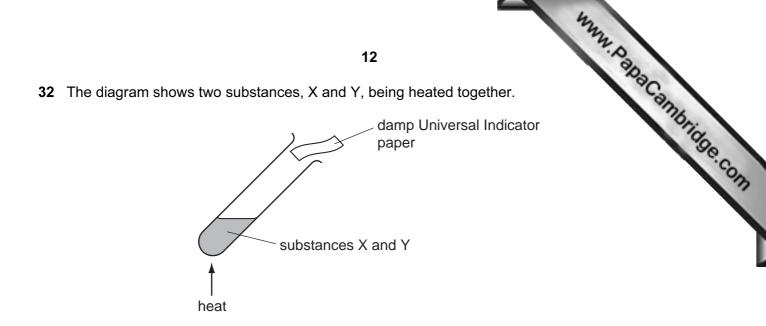
	chemical reaction in step 1	type of oxides removed in step 2
Α	carbon is converted to carbon dioxide	acidic
В	carbon is converted to carbon dioxide	basic
С	iron is converted to iron(III) oxide	acidic
D	iron is converted to iron(III) oxide	basic

27 Pieces of copper, iron, magnesium and zinc are added to separate test-tubes containing dilute hydrochloric acid.

Which test-tube contains iron and dilute hydrochloric acid?

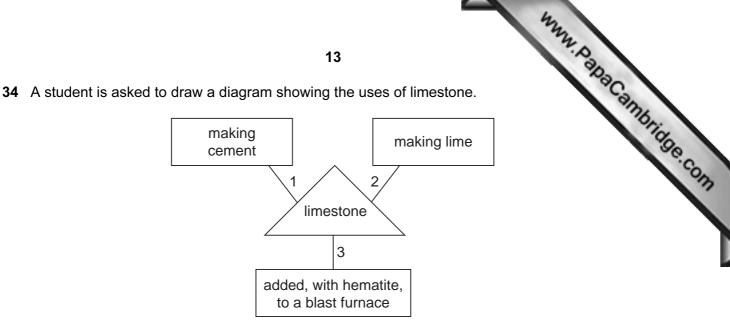


- 28 Which processes are used in the treatment of water?
 - A filtration and chlorination
 - B filtration and reduction
 - C neutralisation and chlorination
 - D neutralisation and reduction
- **29** A factory burns coal with a high sulfur content.

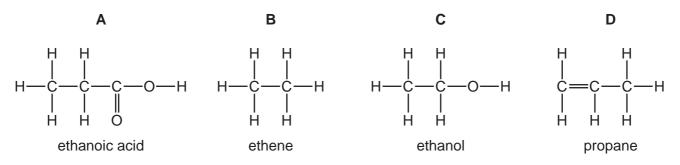

Which pollutant is most likely to lead to the death of trees?

- A carbon dioxide
- B carbon monoxide
- C lead compounds
- D sulfur dioxide
- 30 What is the correct order of abundance of the gases in the air?
 - $\textbf{A} \quad \text{nitrogen} \rightarrow \text{oxygen} \rightarrow \text{argon} \rightarrow \text{carbon dioxide}$
 - $\textbf{B} \quad \text{nitrogen} \rightarrow \text{oxygen} \rightarrow \text{carbon dioxide} \rightarrow \text{argon}$
 - $\textbf{C} \quad \text{oxygen} \rightarrow \text{nitrogen} \rightarrow \text{argon} \rightarrow \text{carbon dioxide}$
 - D oxygen \rightarrow nitrogen \rightarrow carbon dioxide \rightarrow argon
- 31 The diagram shows an experiment to investigate how paint affects the rusting of iron.

What happens to the water level in tubes P and Q?


	tube P	tube Q
Α	falls	rises
в	no change	rises
С	rises	falls
D	rises	no change

The Universal Indicator paper turns blue during the experiment.


What are substances X and Y?

- A ammonium nitrate and hydrochloric acid
- B ammonium nitrate and sodium hydroxide
- **C** sodium carbonate and hydrochloric acid
- D sodium carbonate and sodium hydroxide
- 33 Carbon dioxide is produced when dilute hydrochloric acid reacts with
 - A calcium sulfate.
 - B carbon.
 - **C** copper(II) carbonate.
 - D limewater.

Which numbered lines show a correct use of limestone?

- A 1 and 2 only
- B 1 and 3 only
- C 2 and 3 only
- **D** 1, 2 and 3
- 35 Which structure is correctly named?

36 Which properties of the different compounds in petroleum enable its separation into fractions?

- 1 boiling point
- 2 chain length
- 3 chemical reactivity
- 4 solubility in water

A 1 and 2 **B** 1 and 3 **C** 2 and 4 **D** 3 and 4

37 Alkenes have the general formula C_nH_{2n} .

Which of the following is an alkene?

 $\label{eq:charge} \textbf{A} \quad \textbf{CH}_2 \qquad \textbf{B} \quad \textbf{CH}_4 \qquad \textbf{C} \quad \textbf{C}_3 \textbf{H}_6 \qquad \textbf{D} \quad \textbf{C}_6 \textbf{H}_6$

Which row describes its boiling point and the size of its molecules?

	boiling point	size of molecules
Α	high	large
В	high	small
С	low	large
D	low	small

39 A hydrocarbon X is cracked to make Y and hydrogen.

Compound Z is formed by the addition polymerisation of Y.

To which homologous series do X, Y and Z belong?

	alkane	alkene
Α	X, Y and Z	_
В	X and Y	Z
С	X and Z	Y
D	Y and Z	х

40 Which row is correct for ethanol?

	burns	made by fermentation
Α	\checkmark	✓
в	\checkmark	x
С	x	\checkmark
D	x	x

BLANK PAGE

	0	Heium A	.7	20	Ne	10 Neon	40 A r	Argon	84	Krypton	1	131 Xe	54 Xenon	Rn ^{Radon}				175 Lu Lutetium		Lr Lawrencium 103	PapaCa	no
	=			19	L	9 Fluorine	35.5 C 1		80	Br ^{Stomine}		127 	53 lodine	At Astatine 85				173 Ytterbium	2	Nobelium 102		
	⊳			16	0	Oxygen 8	32 V		62	Se		128 Te		Polonium 84				Thulium 169	6	Mendelevium 101		
	>			14	z	Nitrogen 7	31 D	Phosphorus 15	75	AS Arsenic	33	122 Sb	Antimony 51	209 Bismuth	8			167 Er Erbium	8	Fermium 100		
	2			12	ပ	6 Carbon	28 Si	Silicon	73	Germanium	32	119 Sn	50	207 Pb Lead	70			165 Holmium	10	Einsteinium 99	(r.t.p.).	
	≡			11	ß	5 Boron	27 A 1	Aluminium 13	70	Ga llium	31	115 – –	49	204 T 1 Thallium	5			162 Dysprosium	8	Californium Californium 98	pressure	
									65	Zn ^{Zinc}	30	Cddmium Codmium	Laamium 48	201 Hg Mercury B0	20			159 Tb Terbium	8	BK Berkelium 97	ature and	
									64	Copper	29	Ag	aliver 47	197 Au Gold	61			157 Gd Gadolinium	5	Curium Curium	m temper	
Group									59	Nickel	28	106 Pd	46	195 Pt Platinum	2		-	152 Eu Europium	2	Americium 95	lm ³ at roo	
Group									59	Cobalt Cobalt	27	103 Rhodium	45	192 r Iridium	,,			150 Samarium	-	Plutonium 94	las is 24 d	
		Hydrogen	+						56		26	101 Ru Butteoium	kumenium 44	190 OS Osmium 76	2		-	Promethium	5	Neptunium 03	e of any g	
									55		25	T _{reshoulin}	4	186 Renium	2			n Neodymium	238	Dranium 92	f one mol	
									22	Chromium			woiybaenum 42	184 V Tungsten 74	t		-	141 Praseodymium	0	Protactinium 91	The volume of one mole of any gas is 24dm^3 at room temperature and pressure (r.t.p.).	
									51	Va		B Nb	4	181 Tan Tantalum	2			140 Cerium	232	er Thorium	The	
									48		52	91 Zr	40	um + Hafnium			+	(0	a = relative atomic mass	X = atomic symbolb = proton (atomic) number		
			ſ		0	Ę		mim			5	88 X	36	n 139 Lanthanum 57	5		89	*58-71 Lanthanoid series †90-103 Actinoid series	a = relative	<pre>X = atomic symbol b = proton (atomic)</pre>	1	
	=					m Beryllium	24 MC	<u>8</u> 6			50	°Sr Sr	38	5 137 Ba Im Barlum		. ZZ6 Radium	88	*58-71 Lanthanoid serie 190-103 Actinoid series	ø	× "		
	-			7		3 Lithium	23 Na	Sodium 11	39		19	85 Rb	37 37	133 CS Caesium	8	Fr Francium	87	*58-7 †90-1		Key		

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of