

Cambridge IGCSE™

CHEMISTRY
Paper 4 Theory (Extended)
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2020 Page 2 of 12

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Science-Specific Marking Principles

- 1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.
- 2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.
- Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).
- The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.

5 'List rule' guidance

For questions that require *n* responses (e.g. State **two** reasons ...):

- The response should be read as continuous prose, even when numbered answer spaces are provided.
- Any response marked *ignore* in the mark scheme should not count towards *n*.
- Incorrect responses should not be awarded credit but will still count towards n.
- Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should **not** be awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this should be treated as a single incorrect response.
- Non-contradictory responses after the first *n* responses may be ignored even if they include incorrect science.

© UCLES 2020 Page 3 of 12

6 Calculation specific guidance

Correct answers to calculations should be given full credit even if there is no working or incorrect working, **unless** the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^n$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 Guidance for chemical equations

Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.

State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

© UCLES 2020 Page 4 of 12

Question	Answer	Marks
1(a)	iron(III) oxide	1
1(b)	nitrogen dioxide	1
1(c)	ammonia	1
1(d)	silver	1
1(e)	carbon monoxide	1
1(f)	anhydrous cobalt(II) chloride	1

Question	Answer	Marks
2(a)	11	1
2(b)	38	1
2(c)	2,8,8	1
2(d)(i)	B, C and E	1
2(d)(ii)	A	1
2(d)(iii)	D	1
2(d)(iv)	B and C	1

© UCLES 2020 Page 5 of 12

Question	Answer	Marks
3(a)	triple bond (1)	2
	diagram completely correct (1)	
3(b)(i)	METHOD 1 liquid air (1) fractional distillation (1)	2
	METHOD 2 hydrogen burns in air (to remove the oxygen and then scrub out the carbon dioxide)	
3(b)(ii)	(pressure) 200 atmospheres (1)	5
	(temperature) 450 °C (1)	
	iron catalyst (1)	
	$N_2 + 3H_2 \rightarrow 2NH_3 (1)$	
	equilibrium / reversible (1)	
3(c)(i)	substance that speeds up a reaction / increases rate (1)	2
	unchanged (chemically) at the end	
	OR not used up	
	OR lowers activation energy (1)	
3(c)(ii)	gain of oxygen / loss of hydrogen / electron loss / increase in oxidation state (oxidation number)	1

© UCLES 2020 Page 6 of 12

Question	Answer			Marks	
3(c)(iii)		effect on the rate of the forward reaction	effect on the equilibrium yield of NO(g)		4
		increase (1)	decrease (1)		
		increase (1)	decrease (1)		
3(d)	$4NO_2 + O_2 + 2H_2O \rightarrow 4H_2O $	HNO ₃			2
3(e)	(M _r of NH ₄ NO ₃ =) 80 (1) 35% (1)				2

Question	Answer	Marks
4(a)	sulfur dioxide	1
4(b)(i)	Any two from	2
	 (coke) releases heat or releases energy(when it reacts with oxygen or burns in air) / (acts as a) fuel / increases temperature (in the furnace) / heats (the furnace) / source of energy (coke) 	
	 reduces zinc oxide / is a reducing agent / converts zinc oxide to zinc / removes oxygen from zinc oxide 	
	 (coke) (reacts with oxygen) to produce carbon monoxide / reacts with carbon dioxide to form carbon monoxide 	
	carbon monoxide reduces zinc oxide / converts zinc oxide to zinc / removes oxygen from zinc oxide	

© UCLES 2020 Page 7 of 12

Question	Answer	Marks
4(b)(ii)	$ZnO + CO \rightarrow Zn + CO_2$	1
	OR	
	$2ZnO + C \rightarrow 2Zn + CO_2$	
	OR	
	$ZnO + C \rightarrow Zn + CO$	
4(b)(iii)	temperature inside furnace is above / higher than 907 (°C)	1
	OR temperature is above / higher than the boiling point (of zinc) ORA	
	OR 1200 (°C) is above / higher than the boiling point (of zinc) ORA	
	OR 1200 (°C) is above / higher than 907 (°C) ORA	
4(b)(iv)	condensation / condensing	1
4(c)(i)	zinc	1
4(c)(ii)	(a solution containing the) maximum amount of solute dissolved / no more solute can dissolve (1)	2
	at a given temperature (1)	
4(c)(iii)	one mark for each of any two from: zinc oxide zinc hydroxide zinc carbonate	2
4(d)(i)	heat again and weigh again / repeat steps 2 and 3 (1)	2
	until mass is constant (1)	

Question	Answer	Marks
4(d)(ii)	(moles of MgSO ₄ =) $0.005 / 5 \times 10^{-3}$ (1)	4
	mass of water = 0.63 g (1)	
	moles of water = $0.63 \div 18 = 0.035 / 3.5 \times 10^{-2} (1)$	
	$(x = 0.035 \div 0.005) = 7(1)$	

Question	Answer	Marks
5(a)	become more reactive down the group ORA (1)	1
5(b)(i)	one mark each for any two of: • floats • dissolves / disappears / melts • moves • bubbles / fizzes / effervesces • lilac flame	2
5(b)(ii)	$2K + 2H_2O \rightarrow 2KOH + H_2$ all formulae (1) equation fully correct (1)	2
5(c)(i)	$Cl_2 + 2KI \rightarrow 2KCl + I_2$ $OR Cl_2 + 2I^- \rightarrow 2Cl^- + I_2$ all formulae (1) equation fully correct (1)	2
5(c)(ii)	brown / black	1
5(d)(i)	breakdown by (the passage of) electricity (1) of an ionic compound in molten or aqueous (state) (1)	2

© UCLES 2020 Page 9 of 12

Question	Answer	Marks
5(d)(ii)	heat until it melts / heat to or above melting point	1
5(d)(iii)	Na ⁺ + e → Na	1
5(e)(i)	one mark for each of any two from: (chromium has) high melting point ORA (chromium forms) coloured ions / coloured compounds ORA (chromium has) variable valency / variable oxidation state / variable oxidation number ORA catalytic behaviour ORA ORA ALLOW group 1 or sodium if stated no colour or white or colourless ions or compounds fixed valency / +1 charge only or one oxidation state / forms one chloride low melting point doesn't behave as a catalyst	2
5(e)(ii)	one mark for each of any two from: (chromium / sodium) conducts electricity (chromium / sodium) compounds are soluble (in water) (chromium / sodium) form hydrated salts / form hydrated compounds	2

© UCLES 2020 Page 10 of 12

Question	Answer	Marks
6(a)(i)	compounds with the same molecular formula (1)	2
	different structural formula (1)	
6(a)(ii)		4
	diagram (1) diagram (1) ethanoic acid (1) methyl methanoate (1)	
6(b)(i)		1
6(b)(ii)	condensation	1
6(b)(iii)	O C C H H H H H H H H	2
	1 for each correct functional group	

© UCLES 2020 Page 11 of 12

Question	Answer	Marks
6(c)	one correct linkage fully displayed (1) the whole structure fully correct (1)	2
6(d)(i)	proteins	1
6(d)(ii)	amino acids	1

© UCLES 2020 Page 12 of 12